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Abstract: Please keyin abstract here. The size of the characters is 8 with the 
abstract bold. An investigation on the nonlinear vibration responses of a 
composite laminated shell reinforced with carbon nanotubes (CNT) is presented 
in this paper. The CNT composite laminated shell is simply-supported and 
doubly curved with rectangular base. The shell is subjected to the parametric 
excitation along with y direction and transverse excitation. The elasticity 
modulus of the composite meterial included the micro and macro meterials are 
caculated by the Mori-Tanaka and the Eshelby’s methods. The nonlinear 
governing partial differential equations of motion for the CNT composite 
laminated shell are obtained based on the Reddy’s third-order shear deformation 
thoery. The 1:1 internal resonance and primary parametric resonance is 
considered to analize the nonlinear ordinary differential equations of the shell. 
Numerical results for dynamic responses and chaotic motions of the CNT 
composite laminated shell are obtained to investigate the effects of the forcing 
excitation on the structure. 
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1 Introduction 

Carbon nanotubes fillers are worthy of special notice among many different fillers 
since their positive impact on the polymeric matrix. Nowadays, the CNT reinforced 
composites are widely used in a variety of engineering applications, especially in 
aeronautics and astronautics. Therefore, the knowledge of their dynamic behavior are 
needed to provide more helpful theoretical guidance for the engineering applications.  

Nanotubes have extraordinary mechanical, electrical and thermal properties with 
providing strong, light and high toughness characteristics[1]. Since Iijima[2] discovered 
the carbon nanotubes in 1991, researches related to the nanotubes have been found 
increasingly for their better mechanical performance[3-6]. 
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Several investigations on the mechanics of the CNT composite structures can be 
found in the literatures. A modified rule of mixture has been employed by Tan et al.[7] 
to evaluate the elastic properties of such nano composites. Later, the clay was used in 
the nano layers which are fully dispersed in a polymer matrix to improve the mechanical 
strength, thermal stability and barrier properties of the material[8]. At the same time, 
nanocomposite formation is also reported to improve the performance of the polymer 
material by incorporation of nanomaterial into the polymer matrix[9,10]. Zhu et al.[11] 
carried out the bending and free vibration analyses of functionally graded carbon 
nanotube reinforced composite plates.  

In recently, using the finite element method (FEM) and the first-order shear 
deformation theory (FSDT), Shen and Xiang[12] investigated the large amplitude 
vibration behaviors of nano composite cylindrical shells reinforced by single-walled 
carbon nanotubes in thermal environments. Brischetto et al.[13] analyzed the mechanical 
behaviors of simply supported nano composite layered cylindrical shell panels. Based 
on the Halpin-Tsai model to evaluate the dispersing properties of CNT in the matrix, 
Bhardwajet et al.[14] studied the nonlinear flexural and dynamic behavior of CNT 
reinforced laminated composite plates. Moradi-Dastjerdi et al.[15] investigated the 
dynamic characters of nano composite cylinders reinforced by single-walled carbon 
nanotubes with an impact load. Lei et al.[16] analyzed the dynamic stability of the carbon 
nanotube-reinforced functionally graded cylindrical panels under the static and periodic 
axial force by using the mesh-free kpkp-Ritz method. Fazelzadehet et al.[17] investigated 
the aeroelastic characteristics of nano composite plates reinforced by carbon nanotubes 
under the super sonicflow. Phung-Van et al.[18] studied the static and dynamic behaviors 
of functionally graded carbon nano-reinforced composite plates by using the 
isogeometric analysis and higher-order shear deformation theory. Nguyen[19] presented 
the nonlinear vibration responses of the imperfect laminated three-phase polymer 
nanocomposite panel resting on elastic foundations and subjected to hydrodynamic 
loads. The nano-dynamic mechanical of single-walled carbon nanotubes reinforced 
nanocomposite thin films were examined via experimental method by Venugopal et 
al.[20]. 

A number of scholars expressed different views and ingenious ideas on the nonlinear 
dynamic responses of different plates and shells. Amabili[21] investigated the nonlinear 
vibrations of doubly curved shallow shells with rectangular base, simply supported at 
the four edges and subjected to the harmonic excitation normal to the surface in the 
spectral neighbor hood of the fundamental mode. Eremeyev and Pietraszkiewicz[22] 
established the local symmetry group of the dynamic and kinematic theory of elastic 
shells. Park et al.[23] discussed the forced vibration responses of skew sandwich plates 
with laminated faces subjected to various dynamic loads. Besides, some books also 
introduced the nonlinear dynamics, stability and bifurcation of the composite plates and 
shells[24, 25]. 

Zhang et al.[26, 27] analyzed the nonlinear vibration responses of composite laminated 
plates with the transverse and parametric excitations, and analyzed the dynamic 
behaviors of composite plates related to boundary constraints and load conditions. The 
nonlinear strain gradient theory of shells was presented by Lazopoulos et al.[28]. The 
nonlinear responses of eccentrically stiffened FGM cylindrical panels on elastic 
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foundation subjected to mechanical loads were presented in article[29]. Alijani et a.l[30] 
gave a review on the nonlinear vibrations of different shell structures in the last ten 
years. Liu et al.[31] studied the nonlinear vibrations of a simply supported FGM 
cylindrical shell with small initial geometric imperfection under complex loads. The 
dynamic independent variables of toroidal shell structures in free space were expressed 
by Tizzi[32]. Guo and Zhang[33] also studied a reinforced composite plate with the carbon 
nanotubes (CNT) under combined the parametric and forcing excitations. 

In this paper, the nonlinear dynamic responses of simply supported symmetric 
nanotube reinforced composite shell are investigated. The shell is doubly curved with 
rectangular base and excited by both the in-plane and transverse loads. Based on the 
Mori-Tanaka method and Reddy’s third-order shear deformation theory, the nonlinear 
governing formulations of motion for the CNT reinforced composite plate are derived. 
The nonlinear ordinary differential equations are obtained through the two-order 
Galerkin discretization under the parametric and forcing excitations. Finally, numerical 
simulation are used to express the periodic and chaotic motions of the CNT-reinforced 
composite doubly curved shell by the Runge-Kutta algorithm. These results have 
practical guide significance to the engineering problems in the design of the CNT 
composite shell structures. 

2 Equations of Motion 

A machanical model of a four-edge simply-supported symmetric cross-ply 
composite shallow shell is considered here as shown in Figure 1. The multi layered 
fiber shell is reinforced by CNT and doubly curved with rectangular base. ( ζξξ ,, 21 ) 
denote the orthogonal curvilinear coordinates such that 1ξ  and 2ξ  curves are the lines 
of curvature on the middle surface 0=ζ . The a and b are the curvilinear lengths of the 
edges and h  is the shell thickness. A Cartesian coordinate is located at the middle 
surface of the shell. The displacements of an arbitrary point within the shell in the 
coordinates ( ζξξ ,, 21 ) are denoted by u , v  and w , respectively. The w  is taken 
positive outward from the center of the smallest radius of curvature. The shell is 
subjected to the in-plane and transverse loads. The in-plane excitation 

0 1 2+ cosp p p t= Ω  is along the y  direction at ax = , and the transverse excitation is 
assumed to be 0 1 1+ cosF F F t= Ω . 

 
Fig. 1. Composite Doubly Curved Shell Model 
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The curvilinear coordinates are defined as 111 Rs α=  and 222 Rs α= , where 1s  and 

2s  are the lengths, 1α  and 2α  are the angular coordinates and 1R  and 2R  are principal 
radii of curvature. 

There are three assumptions given for the CNT composite laminated shell. 
1. The nanotubes with the same shapes are uniformly distributed in the matrix  
2. The nanotubes have no agglomeration. 
3. Carbon nanotubes are defined as the long hollow cylindrical fibers in the matrix. 
The stress-strain relationships for the carbon tubes are given as follows 
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where rrrr nmlk ,,,  and rp are Hill coefficients, specifically, rk is the bulk 
modulus for the nanotubes， rn is the axial tensile modulus, rl is the transverse 
modulus， rm and rp  are shear modulus in the perpendicular and are parallel to the 
surface of the nanotube direction, respectively[34]. 

Then, according to the Mori-Tanaka method[35], the average stress and strain of the 
material with two different components can be written as follows 

mmm εCσ = , rrr εCσ = ,           

rrmm σcσcσ += , rrmm εcεcε += .   (2) 
where subscript m and r are short for matrix and reinforced material, and C  means 

stiffness tensors for the matrix and the reinforced material, respectively. 
Then, the CNT are assumed in the large and uniform perfect matrix. Based on the 

calculating method of the effective module given in Mori-Tanaka theory and the 
Eshelby’s method, the average strain in the fiber material can be caculated to the 
average composite strain by a strain concentration tensor A and expressed as follows 

mr Aεε = ,                                 (3) 
where A  is given as 

( )[ ] 1
mrm CCESIA −−+= .                           (4) 

The concrete expressions of the elastic modulus are shown below when the matrix 
material is considered as isotropy material 
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Then, the elasticity modules of axial and transverse for the CNT reinforced 
composite material are expressed as 
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The elastic modulus ijQ  ( ;65421 ,,,,i = )65421 ,,,,j =  of the CNT reinforced 
composite shell can be expressed as follows 
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where the sup bar means equivalent. 
The stiffness elements of the symmetric cross-ply composite laminated shell denoted 

in terms of the stiffness coefficients ( )
kijQ of the k th layer are 
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It is found that there exist the following relations 
02616261626162616 ======== HHFFDDAA  and ijB = ijE =0.        (9) 

It is seen from equation (9) that there is no coupling between the in-plane stretching 
and transverse bending. Then, the force and moment resultants related to the strains and 
curvatures of the shell constitutive equations are expressed in the following form 
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Based on the Reddy’s third-order shear deformation shell theory, the displacement 
fields in the CNT reinforced composite shell are expressed as 
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0ww = .                                              (11c) 
where 0u , 0v  and 0w  are the original displacements at the mid-plane of the shell in 

the 1ξ , 2ξ  and ζ  directions, 1φ  and 2φ  represent the rotations of transverse normal at 
the mid-plane about the 1ξ  and 2ξ  axes. 

Since the thickness of double curvature shallow shells are smaller than the radius of 

curvature in two directions, we have such expressions as 11
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where the ζ  denotes the displacement of any point on the normal direction of the 
composite shell. There exist the following conversion relations between curvilinear 
coordinate system and Cartesian coordinate: 11 ξα= ddx ， 22 ξα= ddy ， ζ= ddz , and 
here α  is the surface metric tensor of the composite shell.  

The Lame coefficients of the composite shell are given 
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The shell satisfies the relationship as ζ+ξ+ξ= dndAdAdR ˆ2211 , here the n̂  is a unit 

vector normal to the middle surface and denotes as 
21
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tangents to the 21, ξξ  coordinate lines. 
An arbitrary infinitesimal area on the surface of neutral plane of the shell is expressed 

as  
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Then, an arbitrary infinitesimal volume on the same plane denotes as  
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ζξξ=ζ=ζ⋅×= ζ dddAAddAdndRdRdV 212121 ˆ .              (14) 

According to the Modified Sanders theory, the strains iε ( yyxxi ,= ) and the 
curvatures iγ ),,( zxyzxyi =  in the mid-plane of the shell can be expressed as 

( )2210
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iii εζ+ε=ε ( )5,4=i .                (15) 
Here, the specific expressions for the above equation are  
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The force and moment resultants related to the strains and curvatures of the shell 
constitutive equations then become 
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The nonlinear governing equations of motion for the CNT composite laminated shell 
can be derived by using Hamilton’s principle in terms of generalized displacements as 
follows 
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where µ  in equation (18c) is the damping coefficient. 
The associated boundary conditions for the simply-supported CNT composite 

laminated shell are as follows: 
0=x  and ax = ,   0,0 =ϕ== ywv , 0== xyxx NM  ,                 (19a) 

0=y  and by = ,   0,0 =ϕ== xwv , 0== xyyy NM ,                 (19b) 

),0(,2

2

2

2

axdzfdzN
h

h

h

h xx =±= ∫∫ −−
                                                        (19c) 

3 Perturbation Analysis 

In this paper, we consider the nonlinear dynamical system of the double curved shell 
in its first two modes of the 1:1 inner resonance. Hence, we express w in the form of 

b
y

a
xw

b
y

a
xww ππ

+
ππ

=
3sinsinsin3sin 21  ,                      (20) 

where 1w  and 2w  are the amplitudes of two modes. 
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The other variables can be written as 
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Likewise, the transverse excitation can be represented as 
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+
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=
3sinsinsin3sin 21 .                             (22) 

Then, doing the dimensionless processing for the equations (18) and taking all these 
resulting expressions into equation (18c), the governing differential equations of 
transverse motion for the CNT reinforced composite laminated shell are formulated by 
applying the Galerkin procedure 

2
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3
23

3
122111

2
1111 cos xxaxaxatxaxxx +++Ω+ω+µ+   

tfxaxaxxaxxa 11
2
28

2
17216

2
215 cosΩ=++++ ,                            (23a) 
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2222 cos xxbxbxbtxbxxx +++Ω+ω+µ+   

tfxbxbxxbxxb 12
2
28

2
17216

2
215 cosΩ=++++ ,                            (23b) 

From equations (23), it is obvious that the dynamical system of the CNT composite 
laminated shell is governed by nonlinear square and cubic terms, parametric and force 
excitation terms. 

4 Numerical Simulation and Discussion 

In this section, we present a comparative study to find the complex nonlinear 
dynamical responses of the CNT composite laminated shell. First, the nonlinear 
governing control equations (23) of the shell are used to perform the numerical 
simulation. The parameters and the initial values are chosen in the following form

9.01 =µ , 5.941 =a , 8.152 =a , 3.973 =a , 0.284 =a , 3.985 =a , 4.186 =a , 
4.537 =a , 0.478 −=a , 5.02 =µ , 2.971 =b , 0.372 =b , 6.383 =b , 1.784 =b , 
5.535 =b , 8.156 =b , 5.947 =b , 5.218 −=b , 6.01 =x , 6.02 =x , 8.03 =x , 0.14 =x . 

The frequency-response curves of the first-order and second-order are obtained as 
shown in Figure 2, where the horizontal axis respects the detuning parameter σ  and 
the vertical axis is the amplitudes of the first and second order modes of the CNT 
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reinforced composite shell, respectively. It is also shown that the system exhibits the 
hard spring character when the detuning parameter 0>σ . The jump phenomenon 
appeares in diagrams (c) and (d) when the nonlinear parameters 4b is equal to -37.78. 
This phenomenon reveals that the system is unstable in this stage and exists the multi 
value solutions in this area. 

 
(a)                                                                      (b) 

 
(c)                                                                     (d) 

Fig. 2. Response-frequency curves 

Then, since transverse excitation also plays an important effect on the nonlinear 
vibration responses of the structure, the transverse excitation f  is chosen to be a 
controlling parameter in the subsequent studies. Fixed the above parameters and 
increased the excitation f  from 20 to 80, bifurcation diagrams of Poincare sections 
for the displacement of the shell are obtained as shown in Figure 3. It shows the 
complex nonlinear dynamics of the system in these parameters. Simple periodic 
motion, period-doubling bifurcation, sub-harmonic response, amplitude modulations 
and chaotic motions have been detected. As seen in the figure, the system shows chaotic 
motions until the transverse excitation f  reaching to 38, where period motion occurs. 
This period-n motion attractor prevails in the range of 38-41, then the chaotic motion 
is observed again until the transverse excitation f  equal to 60. After short windows of 
period-n motions occurs in 60-68, the motions dominantly enter into chaotic motions 
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thereafter. The motion characters of the CNT reinforced composite laminated shell 
alternately appeared from stable to unstable, which depended on the amplitude of the 
transverse excitation. 

  
(a)                                                                     (b) 

Fig. 3. The bifurcation diagram for increasing amplitude of the transverse excitation 
variations on the system 

 
To expose the specific form of different sections in the bifurcation diagram, the 

response-frequency curves, phase portraits, power spectrums and waveforms of the 
shell are depicted as Figures 4-11. In these figures, diagrams )(a  represent the three-
dimensional phase portraits in the space ),,( 321 xxx  while diagrams (b) represent the 
power spectrums. Diagrams (c) and (d) are, respectively, the two-dimensional phase 
portraits on the planes ),( 1xt and the wave forms on the plane ),( 3xt .  

In Figures 4-5, we observe that chaotic motions of the CNT composite laminated 
shell when the transversal excitation 24=f  and 5.29=f , respectively. By increasing 
the transversal excitation f  to 3.39 , we show the periodic-n motion of the shell in the 
Figure 6. The motion of the shell is back to the periodic-n motion when 2.46=f , as 
displayed in Figure 7. Increasing the transversal excitation f  continuously, the system 
is returned back to the chaotic motion for 53=f  as depicted in Figure 8. Then, the 
periodic-n motion of the system is appearing as shown in Figures 9-10 and when the 
transversal excitation f are equal to 74, the system is back to the chaotic motion again 
as shown in Figure 11. 

 
(a)                                                                      (b) 
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(c)                                                                     (d) 

 
(e)                                                                     (f) 

Fig. 4. The chaotic motion of the shell with 0.24=f  

 

(a)                                                                      (b) 

 

(c)                                                                     (d) 
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(e)                                                                     (f) 

Fig. 5. The chaotic motion of the shell with 5.29=f  

 

(a)                                                                      (b) 

  

(c)                                                                     (d) 

  

(e)                                                                     (f) 

Fig. 6. The periodic-n motion of the shell with 3.39=f  
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(a)                                                                      (b) 

  

(c)                                                                     (d) 

  

(e)                                                                     (f) 

Fig. 7. The periodic-n motion of the shell with 2.46=f  

  

(a)                                                                      (b) 
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(c)                                                                     (d) 

  

(e)                                                                     (f) 

Fig. 8. The chaotic motion of the shell with 0.53=f  

  

(a)                                                                      (b) 

  

(c)                                                                     (d) 
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(e)                                                                     (f) 

Fig. 9. The periodic-n motion of the shell with 0.63=f  

  

(a)                                                                      (b) 

  

(c)                                                                     (d) 

  

(e)                                                                     (f) 

Fig. 10. The periodic-n motion of the shell with 2.68=f  
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(a)                                                                      (b) 

  

(c)                                                                     (d) 

 

  

(e)                                                                     (f) 

Fig. 11. The chaotic motion of the shell with 0.74=f  

From the above simulation results of the internal resonance systems, it is found that 
the nonlinear vibration responses of the CNT composite laminated shell are very 
complex under the transverse excitations. We can control the motion of the CNT 
composite laminated shell through adjusting the transversal excitations. 

5 Conclusions 

Nonlinear dynamics of a CNT reinforced composite double-curved shell are studied 
in this paper by theoretical analysis and numerical simulation. The shell is excited by 

ISSN 2572-4975 (Print), 2572-4991 (Online) 30 



International Journal of Smart Engineering, Volume 1, Issue 1, 2017 

the in-plane and transverse loads. Firstly, the average strain and stress in the reinforced 
material can be obtained by using the Mori-Tanaka theory and the Eshelby’s method. 
Then, governing partial differential equations of motion for the CNT composite shell 
are derived via Hamilton’s principle. The ordinary differential equations are formulated 
with the Galerkin discretization, which contain square and cubic nonlinear terms, 
parametric excitation terms and forcing excitation terms. The solutions of the governing 
equations verify the relationship between the steady-state nonlinear responses and the 
amplitudes and frequencies of parametric excitations. Finally, the Runge-Kutta method 
is utilized to obtain the periodic and chaotic motions from the governing equations. 

The results of numerical simulation demonstrate the existence of the periodic and 
chaotic motions under the forcing excitations. The appropriate control technique of the 
forcing excitations contributes significantly to the influence on the responses of 
autonomous nonlinear systems. It is also found that there are same regular phenomena 
appearing in the different internal resonances of the CNT composite shell system.  
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