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Abstract: In allusion to the identification problem of Multi-Degree of Freedom (MDOF) 
nonlinear systems, a new algorithm of systems’ dynamic parametrical modeling, called the 
Redundant Extended Forward Orthogonal Regression (REFOR) is developed in this study, 
to construct a response position-dependent nonlinear dynamic parametrical model. REFOR 
is a new algorithm for dynamic parametrical model, which aims to avoid missing some 
significant model terms when using Extended Forward Orthogonal Regression (EFOR) 
algorithm. Based on Non-linear Autoregressive with Exogenous inputs (NARX) model of 
Single Input Single Output (SISO), corresponding to different response position, a common 
model structure is built via REFOR and a function relationship between unified model 
term’s coefficients and position parameters is established. A dynamic parametrical model 
of MDOF nonlinear systems is constructed as a consequence. Further, a SIMO 5DOF 
nonlinear system is taken as a case study to clarify the advantage of REFOR and its 
application in modeling. Finally, a dynamic parametrical model of cantilever beam is 
established from experimental data. The results indicate that the dynamic parametrical 
model of nonlinear systems, which based on REFOR, can accurately predict output 
response, which provide a theoretical basis for the optimal design of SIMO nonlinear 

systems’ modeling methods.  

Key-Words: MDOF, dynamic parametrical model, NARX model, REFOR algorithm, 
cantilever beam.    

1 Introduction 

  In practice, systems have to be described by using a mathematical model for the 
purpose of analysis and design [1-2]. As a class of numerical model, Non-linear 
Autoregressive with Exogenous inputs (NARX) model is mainly used to describe the 
nonlinear discrete system [3]. The structure of NARX model is simple and the model has 
been widely used in many applications, such as industrial control, target tracking, etc. 
However, the coefficients of NARX model terms don’t have any physical meaning, 
which means it’s difficult to make further analysis on the underlying system. 
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  Because of the problem mentioned above, the dynamic parametrical model based on 
NARX was introduced, in which the physical parameters are explicitly expressed. Tong 
[4] introduced a class of models called threshold models. The models consist of linear 
models where the coefficients of model terms have functional relation with the 
amplitude of past values of some variable (observation position), the associated 
estimation algorithms have also been used in modeling process and the method has 
been validated.  
  Relevant algorithms have been referred as the dynamic parametrical model been 
introduced (VOON [5]; Cyrot-Normand, [6]). Haber [7] derived algorithms for the 
identification of linear models with signal-dependent parameters to represent non-linear 
systems. Diekmann [8] introduced an on-line algorithm and showed that the different 
sets of parameters in operating-point-dependent linear models can be estimated in 
parallel from one period of measurement. Based on the NARX model, Wei [9] built a 
dynamic parametrical model for Single Input Single Output (SISO) systems, where the 
particle damper system was addressed. In Wei’s study, the dynamic parametrical model 
was identified by using the Extended Forward Orthogonal Regression (EFOR) 
algorithm, which is efficient but in order to obtain the common structure of the final 
model, some terms that may contain important information have to be ignored. This 
may induce errors in the analysis and design of the systems. 
  To address this issue, in the present study, a new algorithm known as the Redundant 
Extended Forward Orthogonal Regression (REFOR) is proposed to identify the 
dynamic parametrical model of nonlinear systems, where the multiple output system 
subject to a single input is discussed. A 5DOF nonlinear system is studied as an example 
to illustrate the advantage of the newly proposed algorithm compared with the 
traditional EFOR approach. Moreover, considering the application of engineering 
practice, an experiment is conducted on a cantilever beam and the algorithm is applied 
to build the dynamic parametrical model of the beam system. 
  The paper is organized as follows. Section 1 briefly reviews the dynamic 
parametrical model of nonlinear systems.  Section 2 introduces the new modeling 
method of dynamic parametrical model with REFOR algorithm, an illustrative 
simulation example and experimental validation are considered to test the new method 
then. Conclusions are finally drawn in Section 3. 

2 Modeling method based REFOR 

2.1 Dynamic parametrical model 

NARX model of nonlinear systems 

  As a new representation for a wide class of nonlinear systems, the NARX model was 
firstly introduced in 1981[3]. The most commonly used NARX model is the power-form 
polynomial representation 
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where ( )y t and ( )u t are the system output, input sequences; yn and un are the maximum 

lags for the system output, input ; u yn n n  ; l is the degree of polynomial 

nonlinearity, which means the highest order among the terms;  
  Note that (1) can be expressed using a generic linear-in-the-parameters 
representation 
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where ( )mp t with 1,2, ,m M   are the regressors formed by some combinations of 

predetermined model variables chosen from the vector 
( ) [1, ( 1), , ( ), ( 1), , ( )]u yt u t u t n y t y t n     x ; 

m are the model coefficients; M 

is the total number of potential model terms in the NARX model and
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Structure of dynamic parametrical model 

  The structure of NARX model may not identical, corresponding to the different cases 
of parameter properties [10]. In order to construct an overall dynamic parametrical model 
of nonlinear systems, the objective is to unify the models structure through REFOR 
algorithm, corresponding to K different cases of parameter properties. It is assumed that 
all the K data sets can be represented using a common model structure, denote the kth 
NARX model can be represented by the regression model below 
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where ,k m is the mth coefficients of the kth NARX model, and it has some function 

relation with physical parameter R; 0M is the total number of model terms in the 

common model and 0M M  . 

  Model (4) shows that the structure of dynamic parametrical model is based on NARX 
model, while the coefficients get parameterized that have function relation with 
physical parameter. 

2.2 Evaluation of dynamic parametrical model 

REFOR 

  The associated algorithm with dynamic parametrical model, REFOR, is an optimal 
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of traditional EFOR. Based on the core idea of Forward Regression Orthogonal Least 
Squares (FROLS) algorithm, REFOR firstly builds a series of NARX models, 
corresponding to different cases of parameter properties, under the premise of a 
common model structure, including terms of each model as comprehensive as possible.  

  The basic idea of the REFOR algorithm is to find a common structure for all K 
NARX models such that the coefficient of model terms can be formulated as a function 
of physical parameters. The above REFOR algorithm can be summarized as follows.  

Procedure 1 Orthogonalization of models   

  A compact matrix form of kth ( 1, ,k K  ) NARX model is. 

k k ky P  (5) 

where ky is the output vector of kth model; k is the parameter vector of kth model; kP

is a matrix consists of candidate model terms of kth model.  
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 Assume that the regression matrix kP is full rank in columns, and there exists matrix

kW and kA such that can be orthogonally decomposed as [3]. 

     k k kP W A   (7) 

where kA is an M M unit upper triangular matrix and kW is an ( 1)N p M   matrix 

with orthogonal columns. 
  The space spanned by the orthogonal vector ,1 ,2 ,[ , , , ]k k k M   is the same as that 

spanned by the basis vector ,1 ,2 ,[ , , , ]k k k Mp p p  , and (1) can be expressed as. 
1( )( )k k k k k k k

 y P A A W G   (8) 

where T
,1 ,2 ,[ , , , ]k k k k k k Mg g g  G A  ; , ( 1, 2, )k mg m M  is the orthogonal 

coefficients. 
  Orthogonalize the model term vector of matrix via the basis of Gram-Schmidt 
algorithm [3].  
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Procedure 2 Modeling method of REFOR 

Step1: Let (1)
, ,k m k m p , according to (10), calculate 
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where superscript (1) denote the first step of the algorithm. 
  For 1, 2,m M  , calculate the Error Reduction Ratio (ERR) according to [11] as 

(1) 2 (1) (1)
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where ERR was introduced to measure the significance of the model terms in the 
description of system. Denote 

 (1)
,1 ,arg max ERR ,1k k ml m M    (13) 

such that  (1)
,1 ,ERR[ ] max ERR ,1k k ml m M   , the first significant basis can then be 

selected and the first associated orthogonal vector is chosen as 

,1

(1)
,1 , ( 1, , )

kk k l k K =  . Specify a new vector , (1 )k m m M  , which representing 

the selected term and let
,1,1 , kk k l p . 

Step s (s>=2): With regard to the selected orthogonal vectors ,1 ,2 , 1, ,k k k S    , let
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1

, ,( )
, , ,

1 , ,

,

,

s
k m k ls

k m k m k l
l k l k l





 
 

 
p

p


 
 

  (14) 

 
( )
,( )

, ( ) ( )
, ,

,

,

s
k k ms

k m s s
k m k m

g
 


 

y 
 

  (15) 

 
( ) 2 ( ) ( )
, , ,( )

,

( ) ,
ERR 100%

,

s s s
k m k m k ms

k m
k k

g  
 

 y y

 
  (16) 

Let 

  ( )
, ,arg max ERR s

k s k ml    (17) 

Let
,

( )
, , k s

s
k s k l=  and

,, , k sk s k l p . 

Step s+1: The search is terminated at the kM step when the Error Reduction Ratio (ESR) 

is less than a pre-specified threshold 
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  The final kth NARX model is the linear combination of the kM significant terms 

selected from the M candidate terms 
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Step s+2: There will be a total of K orthogonal type of NARX models like (19) after 
the selection process above, and all of the terms that each model identifies should be 
brought into the final common-structured model via REFOR. 
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where 0M is the total number of terms in the final model, 1, , KM M is the total number 

of terms that each model selects. 
Step s+3: Because of the new added terms, the coefficients of them need to be re-
estimated. Assume a subset k , which consists of orthogonal vectors 
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model;  
  Note that from (23) that all of coefficients of new added terms can be re-estimated, 
the remaining 1K  NARX models will be revised when repeat the modeling process 
above. 
Procedure 3 Unify the structure of dynamic parametrical model 
  Note that the model (20) is not the final dynamic parametrical model. As for original 
model terms, the coefficients need to be inverse orthogonalized based on Inverse-Gram-
Schmidt algorithm [3]. 
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  As for new added terms, the coefficients will be. 
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  After the transformation of ,k mg , the sum of K NARX models will be established, 

which have unified-structure. Then the relationship between ,k m and parameter 

property need to be built through mathematical expression [12]. 
  This paper adopts the polynomial expression to describe the relationship between

,k m and R. 
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where J is the degree of polynomial nonlinearity; ( 1, , )mR m q  denotes the position 

parameter; 
1 , , Sj j  is the coefficient of polynomial term, which can be estimated by 

Least Squares (LS) algorithm [13]. 
  The final dynamic parametrical model concerned with position will be established, 
which is consists of (4) and (27). 

2.3 A case study and discussion  

  Consider an SIMO 5DOF nonlinear system in Fig. 1. The five lumped masses are

1 2 3 4 5 1kgm m m m m     . The five masses are connected by series of springs and 

dampers, where linear springs with stiffness 7
1 2 3 4 5 10 N / mk k k k k     , 

nonlinear springs with stiffness 11 210 N / mnonk  , linear dampers with damping 

coefficients 1 2 3 4 5 10Ns / m c c c c c     and nonlinear dampers with damping 

coefficients 2 25000Ns / mnonc  . 

5c
nonc 2c1c 3c 4c

nonc nonc nonc nonc

nonk nonk nonk nonk nonk

 

Fig.1. An SIMO 5DOF nonlinear system 

  Construct the NARX models correspond to mass 1,3,4,5. In order to stimulate the 
system, Gaussian processes with zero mean and a variance 2 24  were used as the 
external input. The system was simulated using a fourth-order Runge-Kutta method, 
each data set consists of 3000 data pairs of the input (applied force) and the output 
(acceleration) observations, sampled with a frequency 1000Hzsf  . Four data sets, 

corresponding to mass 1,3,4,5, with the same input, as shown in Fig.2, but with different 
output, as shown in Fig.3, were used for model identification, and one data set, 
corresponding to mass 2, was used to test the performance of the identified dynamic 
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parametrical model. 

 

Fig.2. The input signal used for nonlinear system 

 

 

Fig.3. The output signals corresponding to mass 1,3,4,5 

  Denote the system input and output sequence using   1
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  Firstly, there are four NARX models corresponding to mass 1,3,4,5, which were 
identified by REFOR algorithm. Denote the pre-specified threshold 0.05  and the 

results were given in Table 1. 
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Table 1. Identification result for each mass 

Search 

step 

Mass 1 Mass 3 

Terms ERRs Coefficients Terms ERRs Coefficients 

1 ( 4)y t   63.7831 -0.935 ( 4)y t   72.9887 -0.9352 

2 2( 5)y t   14.9875 34.6026 10   2( 5)y t   14.5148 31.911 10   

3 ( 3)y t   5.7733 -0.3756 ( 5)y t   6.4915 0.7857 

4 2( 3)y t   6.2793 41.0056 10   ( 1)y t   3.5658 0.6097 

5 2( 4)y t   1.3041 41.352 10      

6 ( 3) ( 4)y t y t   1.8292 36.3501 10     

7 ( 2)u t   0.5415 71.3663 10     

8 ( 3) ( 5)y t y t   0.4921 38.2201 10     

9 ( 1)y t   0.5165 -0.1399    

Total  95.5066   97.5608  

Search 

step 

Mass 4 Mass 5 

Terms ERRs Coefficients Terms ERRs Coefficients 

1 ( 4)y t   74.2974 -0.9384 ( 4)y t   74.4698 -0.9548 

2 2( 5)y t   12.9988 31.5788 10   2( 5)y t   11.8168 31.7486 10   

3 ( 5)y t   7.3656 0.802 ( 5)y t   7.3618 0.7337 

4 ( 1)y t   3.6649 0.6201 ( 1)y t   2.9779 0.5417 

Total  98.3267   96.6263  

 
  Under the premise of common-structured model, REFOR then includes terms of each 
NARX model as comprehensive as possible, and the final 10 selected common model 
terms were shown in Table 2. 

Table 2. Identification result by using REFOR 

No. Terms 
Coefficient for different data sets 

Mass 1 Mass 3 Mass 4 Mass 5 

1 ( 2)u t   71.3663 10  72.9656 10  72.3898 10  71.93 10  

2 ( 1)y t   -0.1399 0.6097 0.6201 0.5417 

3 ( 3)y t   -0.3756 -0.0188 -0.01 -0.0292 

4 ( 4)y t   -0.935 -0.9352 -0.9384 -0.9548 

5 ( 5)y t   -0.0013 0.7857 0.802 0.7337 

6 2( 3)y t   41.0056 10   -81.1288 43.185 -149.4653 

7 2( 4)y t   41.352 10   394.7055 444.9489 429.4193 

8 2( 5)y t   34.6026 10   31.911 10   31.5788 10   31.7486 10   
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9 ( 3) ( 4)y t y t   36.3501 10  469.3153 561.6396 513.0609 

10 ( 3) ( 5)y t y t   38.2201 10  31.2876 10  31.3274 10  31.59 10  

 
  As shown in Fig 1, let the left-side as base line, the position parameter R is defined 
as dimensionless number corresponding to each of mass like’1, 2, ,5 ’. The dynamic 
parametrical model for 5DOF nonlinear system was chosen to be 

1 2
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y t R u t R y t

R y t y t R y t y t

 
 

   

      
       (29) 

where the parameter ( 1, 2, 10)m m   depends on the parameter R. Assume that 

parameter m can be fitted using R, with a polynomial function below 
2 3

,0 ,1 , 2 ,3( )m m m m mR R R R          (30) 

  The parameters , ( 1, ,3)m n n   can directly be estimated using the LS algorithm 

6 6 7 2 8 3
1

2 3
2

4 4 3 2 3 3
10

( ) 1.1529 10 1.2316 10 4.4911 10 4.867 10

( ) 0.0819 0.135 0.3079 0.0558

( ) 1.7615 10 2.5382 10 9.9343 10 1.1846 10

R R R R

R R R R

R R R R







           


    


         


  (31) 

  The comparison between REFOR’s predicted output and real system’s output is 
presented in Fig.4. 

 

Fig.4 .A comparison among the REFOR’s output and corresponding real output for 
system: output of real system, REFOR output 

  Clearly, the REFOR’s predicted output can provide an excellent representation for 
the test data sets. 

2.4 Experimental validation 

  A cantilever beam is taken for experimental validation, with five acceleration 
transducers stick to it, each of them is 100mm apart. The force transducer is connected 
with vibration exciter by bolted joint, which transmits the excitation from power 
amplifier, and the other end stick to the bottom of cantilever beam. The input (force) 
and output (acceleration) was measured by LMS test system. The experimental set-up 
is shown in Fig.5. 
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(a) Test rig of cantilever beam with transducers           (b) LMS test system 

Fig.5. Experimental setup 

  Four data sets, corresponding to transduce 1,3,4,5, with the same input, but different 
output, are used for model identification, and one data set, corresponding to transducer 
2, was used to test the performance of the identified dynamic parametrical model. 
  The experimental scenario is confined to the industrial application, for example, 
structural damage detection of cantilever beam structure, and the input is a banded 
limited white noise signal [14].The comparison between REFOR’s predicted output and 
corresponding measurements is presented in Fig.6.  

 
corresponding real measurements: output of real system, output of REFOR identified 

Fig.6. A comparison between the REFOR’s output and 

3 Conclusions 

  EFOR selects model terms based on AERR criterion, which may missing some 
significant terms, and the underlying system can’t be represented comprehensively. In 
a contrast, the new system identification algorithm REFOR includes the model terms 
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as comprehensive as possible, which have been identified by corresponding different 
cases of NARX model, under the premise of a unified model structure. The new 
algorithm can provide a good prediction to the underlying system’s output and avoid 
the defects of EFOR. 
  Furthermore, pre-specified threshold  directly affect the accuracy of model’s 

prediction, the value of  will be discussed in the next paper.  
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