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Abstract: A fully consistent geometrically nonlinear model for the elastic uni-

form Euler-Bernoulli beam with setting angle is proposed in this paper. Consid-

ering the Euler angles of the beam cross section in 3D space, the nonlinear partial 

differential equations of axial-bending-bending-torsional vibration of the canti-

lever beam are obtained by utilizing the principle of curvature and the Hamilton 

principle. The new mathematical model is more sophisticated than the previous 

models as a result of containing the centrifugal forces, Coriolis forces, rotary in-

ertia, curvature items and other available terms. The complex mathematical 

model can be simplified easier by adjusting the setting angle and omitting some 

less important items. Comparisons are made in detail to existing models in the 

literature by analysis. More precise results may be obtained through the new 

models and formulations. 

Keywords: Euler angles; rotating Euler-Bernoulli beam; axial-bending-bending-
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1. Introduction 

Rotating cantilever beams are often used as a simple model for many engineering 

structures, such as propellers, compressor blades, turbine blades, and flexible satellite 

booms. For the high-speed rotating structures, they are often perturbed by unsteady 

aerodynamics. In addition, the temperature gradient and various loads can also lead to 
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the deformation of the blades. Since the study of high speed rotating structures are very 

important, many scientists have studied the rotating structure modeling theoretically 

and experimentally. 

Modeling issues regarding rotating beams have been interesting research topics for 

a long time. Carnegie [1] first derived the theoretical expression of potential and kinetic 

energy of rotating cantilever beam subjected to centrifugal loads. Others continued this 

research in-depth after that. Rao and Carnegie [2] considered the coupled bending-tor-

sional vibration problem in the process of modeling while the axial vibration of the 

beam was not mentioned too much. Wright [3] considered the variation of mass distri-

bution and analyzed its influence on vibration frequencies and modes of the beam. Re-

searchers continued to take more factors into account, making the results more theoret-

ically interesting. Bedoor [4] proposed a blade model with an elastic beam fixed on the 

hub by Lagrange method and finite element method considering the couple of the tor-

sion and bending deformation. Yoo et al. [5] established the model of a rotating blade 

with lumped mass, and analyzed its vibration characteristics. Later they used the finite 

element method to solve the bending-bending-axial vibrations of the rotating beam ne-

glecting the gyroscopic terms and torsion vibration. 

Nassar and Bedoor [6] put forward the dynamic equation through Euler-Bernoulli 

beam theory as well as the small deformation theory, and studied the vibration of blade 

under the torsional deflection. The results obtained tend to be more accurate while 

Hamdan and Sinawib [7] simplified the blade to a slender flexible cantilever beam with 

a setting angle fixed on a rotating hub. Sakar and Sabuncu [8] studied the coupling ef-

fects of distance from the center of curvature to the center of mass, rotating speed, hub- 

radius and installation angle. Cai [9] has established a kind of coupled in-plane bending-

stretching/compression vibration equation of Euler beam. The influence of rotational 

angular acceleration and the global moment of inertia is considered. 

Diken and Alnefaie [10] studied the vibration of an unbalanced flexible rotor blade. 

The blade connected to the disc is considered to be a fixed free Euler Bernoulli beam. 

In their study, the coupled equations of the rotor blades are obtained by Lagrange equa-

tion. Some scholars put forward the nonlinear research and analysis of the blades. Far-

hadi and Hosseini [11] studied the characteristics of supersonic rotating rectangular plate, 
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and establish the nonlinear equation by using the von Kármán first-order shear defor-

mation theory considering the aerodynamic problems, plates’ width ratio, thickness ra-

tio, wheel radius ratio and rotation speed.  

Hyungrae and Hong [12] presented a classic model of a rotating cantilever beam 

using nonlinear von Kármán strain and the corresponding linear stress while the rotary 

inertial terms were not considered. Ahmad and Mohammad [13] established the blade 

model based on the first order shear deformation theory (FSDT) and the classical beam 

theory (CLT), and the finite element method (FEM) is used to study the nonlinear vis-

coelastic model of the beam. Then, Yang and Zhang [14] focused on the research about 

nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vi-

brations, and emphatically pointed out the gyroscopic coupling terms. Zhang and Feng 
[15] studied the nonlinear vibration of aero engine compressor blade, and the blade was 

simplified as a cantilever beam of thin functionally graded materials. The nonlinear 

partial differential equations of the blade were obtained by using the first-order piston 

theory, the effect of geometric large deformation, and Hamilton principle. 

Based on the aforementioned references, it is found that the high-speed rotating 

blades are often simplified as beams or plates considering a series of factors in previous 

models. However, the models of Euler-Bernoulli beam in 3D space are still inadequate. 

In this work, we study systematically the dynamics of the rotating uniform Euler-Ber-

noulli beam with setting angle. The Euler angles, transformation of the beam cross sec-

tion in 3D space and the principle of curvature are considered simultaneously for the 

first time. The nonlinear partial differential equations of axial-bending-bending-tor-

sional vibration of the cantilever beam obtained in this paper based on the exact geo-

metric relations are constructed and discussed. Comparisons in details are made with 

the existing models in the literature.   

2. Formulation of the rotating Euler-Bernoulli beam in 3D space 

2.1 Kinetic energy of the rotating Euler-Bernoulli beam 

Consider a uniform Euler-Bernoulli beam fixed on a rigid hub of radius r as shown 

in Figure 1. To set up a inertial coordinate system o-xp-yp-zp. Assuming the high speed 
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rotating blade has a setting angle γ and rotating about its axis at a constant angular speed 

Ω. The undeformed beam geometry is described by the coordinate system x-y-z. The x-

axis coincides with the centroid axis of the undeformed beam, and y-axis and z-axis are 

directions along the two sides of the undeformed beam cross-section. The relations be-

tween the non-inertial coordinate system x-y-z and the inertial coordinate system xp-yp-

zp are: 

, cos sin , cos sinp p p p px x y y z z z y                  (1) 

 
Fig. 1. Rotating beam configuration and coordinate system 

Four directional vibrations of the beam will be studied including axial displace-

ment u in the x-direction, two orthogonal lateral deflection: v in the y-direction, w in 

the z-direction, and the angle of twistφ. We choose an arbitrary beam cross section to 

express the variety of Euler angles as shown in Figure 2.  

    
Fig. 2. Sequence of Euler angles.  

From the undeformed plane, the cross section varies for three times: 

1). Let the cross section rotate ψ about z axis from x-y-z to x1-y1-z1： 
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2). Let the cross section rotate θ about y1 axis from x1-y1-z1 to x2-y2-z2：  
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3). Let the cross section rotate φ about ε axis from x2-y2-z2 to x3-y3-z3： 
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The transformation matrix Q can be defined as 

 
cos cos cos sin sin

= cos sin sin sin cos sin sin sin cos cos sin cos

sin sin cos sin cos cos sin sin sin cos cos cos

Q
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(5) 

We use the Euler angles to relate the varieties of angular velocity through the 

above relations. The frame x-y-z which describe the undeformed beam is rotating at 

angular velocity Ω around the inertial frame while the relative angular velocity of the 

frame is  between x1-y1-z1 and x-y-z,   between x2-y2-z2 and x1-y1-z1,  between x3-

y3-z3 and x2-y2-z2. The relative angular velocity to the inertial frame can be obtained as 
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The values of cosine and sine are set unit and zero respectively by applying the 

small rotation angles assumption, and then we get  
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The directional time derivatives of 
3 3 3x y zi i i， ， can be obtained as 

3 3 3 3

3 3 3 3
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Similarly, the directional time derivatives of x y zi i i， ，  are 
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 These relations will be used in the following derivation of the kinetic energy.  

  
Fig. 3. Position vector of an arbitrary point  

 

We express the deformation by choosing an arbitrary point on the beam denoted 

by the vector R, and it can be described as 

 
3 3x y z y zR x u v w y z      R i i i i i .                     (11) 

 

Considering the time derivatives of the positions, the velocity of R is  

  3 3+
y zyx z

x y z
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i iii i
R i i i    .     (12) 

We then express R  in the coordinate system of o-x-y-z as  
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where                                    
0

= 0 0

0 0
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r .                                             (14) 

Then, we can obtain the kinetic energy of the rotating Euler-Bernoulli beam by 

substituting Eq. (13) into 

0
d d

2

L

A
T A x


   R R  ,                                       (15) 

where ρ is the density of the beam.  

2.2 Potential energy of the rotating Euler-Bernoulli beam 

Since 
3 3 3x y zi i i， ， are unit vectors along the orthogonal curvilinear coordinate sys-

tem 3 3 3- -x y z . We have 

j k jki i   .                                         (16) 

Differentiating Eq. (16) with respect to x yields the identities 

0, ; , 1,2,3j j j k k ji i i i i i j k         .                    (17) 

By using Eq. (17), we differentiate 
3 3 3x y zi i i， ， with respect to x and obtain 
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where             
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and                              
3 3 3 3 3 31 2 3= = =y z z x x yi i i i i i      ， ， .                           (20) 

Here [K] is the curvature matrix, ρ1 is the twisting curvature about the axis, ρ2 is 

the bending curvature about y axis, and ρ3 is the bending curvature about the z axis. 

Differentiating
3 3y zi i， with respect to x, then we have 
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The differentiation is with respect to the undeformed length dx instead of the actual 

deformed length (1+e) dx.  Substituting Q21, Q22, Q23 from Eq. (9) into Eq. (21). ρ1, ρ2, 

ρ3 and e can be carried out by using Taylor expansion as 
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The potential energy for Euler-Bernoulli can be derived as follows. 

          2 2 2 2
2 3 10 0 0 0
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where E, G are the elastic and shear modulus, respectively, and Iy, Iz are the moment of 

inertia with respect to z and y axis. We finally substituting the resulted kinetic and po-

tential energy into the Hamilton principle equation:  

 2

1

d 0
t
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T U t   .                                     (24) 

2.3 Nonlinear dynamic equations of the rotating Euler-Bernoulli beam 

We obtain the following four nonlinear governing equations. 

axial directional displacement ( x direction ): 
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chordwise directional displacement ( y direction bending ): 
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flapwise directional displacement ( z direction bending ): 
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twist angle with respect to x axis: 
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Now introducing dimensionless variables and parameters: 
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Then the four governing equations can be cast into the dimensionless form: 
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(30) 
By omitting the nonlinear terms, we can get the four simplified linear equations: 
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where  

  1
= cos tan sin

cossu x R x R x R x          
.                  (32) 

 
3. Conclusions 

The nonlinear partial differential equations of axial-bending-bending-torsional vi-

bration in 3D space of the cantilever beam are obtained in this work. The underlined 

parts are gyroscopic terms due to the Coriolis force and Euler variation. The axial dis-

placement and twisting displacement are gyroscopically coupled with both bending dis-

placement motions. When the setting angleγ is set zero, the blade plane is parallel to 

the rotating plane. When the setting angle is 90°, the blade plane is in normal with the 

rotating plane. In the linear equations, whenγ is zero, there will be gyroscopic coupling 

between the axial motion and chordwise transverse motion while not coupling with the 

flapwise motion, and the torsional vibrations couple with the flapwise motion only. 

If the axial vibration and nonlinear terms are neglected, the similar governing 

equations by Huo [16] and Ozgumus [17] can be obtained. If we only consider the flapwise 

bending and axial vibrations, the governing equations of S.C. Lin [18-19] can be obtained. 

We can get the results of Invernizzi and Dozio [20] about the axial, edgewise, flapwise 

and torsional vibrations for the rotating Euler-Bernoulli beam by setting angle 0° or 90° 

and omitting nonlinear terms. By omitting the twist vibration, effects of curvature and 
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the nonlinear terms, the full formulation of Huang [21] can also be obtained. We believe 

more precise results can be obtained through the new models and formulations. And 

we will study further in the future work. 
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