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Abstract: Gearbox and the inside geared rotor systems are core parts in 

wind turbine which can realize the transmission and energy transfer from wind 

blades to electric generator. The vibration properties of the gearbox together 

with its geared rotor systems under sever loading prominently determine the 

efficiency and operating quality, even the whole life expectation and reliability 

of the wind turbine. Here, the vibration behaviors are predicted and analyzed 

for the gearbox and the geared rotor systems of popularly used wind turbines. 

Experimental measurements of vibrations on the wind turbine gearbox under 

severe loading are performed on the test-rig and on-site. The vibration signals 

of different testing points are analyzed in time and frequency domains to 

explore the underlying complicated behaviors. Hilbert-Huang transform (HHT) 

method is applied in this paper to distinguish the difference load of vibration 

signals. Firstly, Hilbert-Huang transform is briefly introduced. Secondly, 

vibration signals of different load are described by Empirical Mode 

Decomposition (EMD) and Hilbert spectra. With these results, the vibration 

signals are distinctly different from each other. It is proved that different load 

can bring differnt vibration effect of the gearbox through the above 

comparisons. In sum, the technologies and results of this work provide some 

good references for  vibration prediction and analysis for gearbox and its geared 

rotor system of wind turbine.  

Keywords: Vibration signals, Gearbox, Wind turbines, Hilbert Huang 

Transform Method, Vibration Prediction 

1 Introduction 

Wind energy is one of the most developed renewable energy prospects. The 

world's wind power industry develops rapidly in recent years, as well the world's total 

wind turbines capacity reached 310 million kilowatts by the end of 2013. In recent 

years, Chinese wind turbines capacity increases rapidly, and becomes the largest one 

all over the world. However, China's wind power equipments are often operating in 

low efficiency, and the yearly average utilization time of a machine is only 1903 
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hours comparing with the expected 2500 hours[1]. The main reason is due to many 

failures and poor reliability of the wind turbine machines. 

   The transmission chain system of wind turbine (except directly drive wind turbine) 

includes hub, shafts, bearings, and gearboxes. The gearbox is the major pathway of 

energy transfer and works under severe loading. The failure of the transmission 

system of wind turbine always causes the wind turbine shutdown at once.  

   Fourier spectral analysis has provided a general method for examining the global 

energy-frequency distributions, but has some inherent restrictions, for example, the 

system must be linear and the data must be strictly periodic or stationary. So how to 

identify or at least to distinguish the non-stationary properties of the signals is of 

major concerned. In recent years, some time-frequency processing methods for 

nonlinear and non-stationary signals have been proposed, such as wavelet analysis, 

Wigner-Ville distribution, etc [2-5].  

Recently, a new method based on Hilbert-Huang transform (HHT) for analyzing 

non-stationary signals has been proposed[6], in which the expansion bases are adaptive 

for signals from nonlinear and non-stationary processes. Based on this method, any 

complicated signals can be decomposed into a finite and often small number of 

‘Intrinsic Mode Functions’ (IMFs) that admit well-behaved Hilbert transforms. And 

with the Hilbert transform, the IMFs yield instantaneous frequencies as functions of 

time that give sharp identifications of embedded structures. The final presentation of 

the results is an energy-frequency-time distribution, designated as the Hilbert 

spectrum [7-9]. 

   In this paper, vibration signals of the gearbox of wind turbines under different rated 

input loads are analyzed. From their time and frequency domain waveforms, they are 

not easily to be distinguished. In using HHT, we obtain effective distinctions between 

them. The results demonstrate that HHT is effective to identify the features of 

vibration signals of the gearbox of wind turbines under different rated input loads.  

2 Basic algorithm procedure  of HHT 

   HHT involves two aspects: empirical mode decomposition (EMD) and Hilbert 

spectral analysis (HAS)[6]. Firstly, a time-adaptive decomposing operation named 

EMD is applied to a signal, in which the signal are decomposed into a set of complete 

and almost orthogonal components named Intrinsic Mode Functions (IMFs). 

Secondly, with Hilbert transforming of those IMFs, a full energy-frequency-time 

distribution of the signal is obtained and designated as HAS [10- 11].  

   The IMFs, which are regarded as both the amplitude modulation and the frequency 

modulation, satisfy the following requirements: 1) the number of extremes and the 

number of zero crossings in the IMF must either be equal or different at most by one; 

and 2) at any point the mean value of the envelopes defined by the local maxima and 

local minima must be zero. The process to find the IMFs of a signal x(t) comprises the 

following steps: 
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   1) Find the positions and amplitudes of all local maxima and minima in the input 

signal x(t). Then create an upper envelope by cubic spline interpolation of the local 

maxima, and a lower envelope by cubic spline interpolation of the local minima.  

   2) Calculate the mean of the upper and lower envelopes; this is defined as 1( )m t .  

   3) Subtract the envelope mean from the original input signal, 

1 1( ) ( ) ( )h t x t m t                                                                   (1) 

   4) Check whether 
1( )h t  meets the requirements to be an IMF. If the sifting 

result 1( )h t is an IMF, stop the process. Otherwise, treat 1( )h t  as the new signal data 

and iterate on 1( )h t  through the previous step 1) ~ 4). That is, to set 

11 1 11( ) ( ) ( )h t h t m t                                                                (2) 

Repeat this sifting procedure k times until
1 ( )kh t is an IMF. This is designated as the 

first IMF, shown below 

1 1( ) ( )kc t h t                                                                            (3) 

5) Subtract 1( )c t  from the input signal and define the remainder, 1( )r t , which is the 

first residue as following, 

1 1( ) ( ) ( )r t x t c t                                                                        (4) 

6) Since the residue 1( )r t  still contains information related to longer period 

components, it is treated as a new data stream and the above-described sifting process 

is repeated until the last IMF.  

This procedure can be repeated n  times to generate n  residues, ( )nr t , and result in 

2 1 2 1( ) ( ) ( ),..., ( ) ( ) ( )n n nr t r t c t r t r t c t                                        (5) 

The sifting process stops when either of two criteria are met: 1) the 

component ( )nc t , or the residue ( )nr t , becomes so small as to be considered 

inconsequential; or 2) the residue, ( )nr t , becomes a monotonic function from which an 

IMF can not be extracted. For example, the stopping condition for an IMF is 
2

1

2

1

[ ( ) ( )]

( )

k k

t k

h t h t
S

h t
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


                                                           (6) 

where ( )kh t  is the sifting result in the kth iteration, and S is typically set between 

0.2 and 0.3. Besides, in order to achieve the last IMF, a simple way can be used. The 

last IMF could be obtained when the cubic spline fitting stops due to the number of 

local maxima or minima of the residue is less than 2.  

   Finally, we obtain 

1

( ) ( ) ( )
n

j n

j

x t c t r t


                                                           (7) 

In other words, the original signal can now be represented as the sum of a set of 

IMFs plus a residue. 

Now apply Hilbert transform to all IMFs,  
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After the Hilbert transform, ( )jH c t    and ( )jc t  form a complex signal. So, the 

envelope of every IMF, ( )jc t , is given by 
2 2( ) ( ) ( [ ( )])j j ja t c t H c t                                                   (9) 

The phase functions are  

[ ( )]
( ) arctan

( )

j

j

j

H c t
t

c t
                                                   (10) 

And the instantaneous frequencies are obtained as 

d ( )
( )

d

j

j

t
t

t



                                                             (11) 

Having obtained the components of IMFs, we will have no difficulty to apply 

Hilbert transform to each component of them. With the Hilbert transform of each IMF 

component, we can express the signal in the following form, 

1

( ) ( )exp( ( ) )
n

j j

j

X t a t i t dt


                                        (12) 

Equation (12) also enables us to represent the amplitude and the instantaneous 

frequency as functions of time in a three-dimensional space, in which the amplitude 

can be contoured on the frequency-time plane. This frequency-time distribution of the 

amplitude is designated as the Hilbert amplitude spectrum, i.e. ( , )H t . With the 

Hilbert spectrum defined, we can also define the marginal spectrum, i.e. ( )h  , as 

following 

0

( ) ( , )

T

h H t dt                                                    (13) 

   The marginal spectrum offers a measurement of the total amplitude (or energy) 

contribution. 

3 Structure description and measuring method of wind turbine 

gearbox 

The wind field tests on the 5MW wind power unit transmission chain are shown in 

Fig. 1. It is a ring gear driving planetary gear train, fixed axis gear train and a fixed 

parallel shaft gear set. The basic parameters and rated input power are shown in table 

1. Speed ratio of the 1st stage is 4.333. Speed ratio of the 2nd stage is 3.609 and speed 

ratio of parallel shaft is 6.550, the total speed ratio is 102.426. The 1st stage has three 

planet gears.The on-site measurement of gearbox is shown in Fig. 2. The testing 

points are selected as shown in Fig. 3 in which the numbers '1' - '9' indicate the points 

of putting accelerators, and the letter 'F' refers to the reference point. 
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Table 1.  Parameters and rated input load 

rated input power  5730kW 

rated input speed 11.9r/min 

Transmission type 
NW planetary + 1st stage 

parallel shaft 

Total transmission ratio 102.426 

 

inT

outT

r

1p

2p

s

1

2

1st stage 2nd stage 3rd stage      

(a) Transmission principle               (b) Gear system                     (c) 3D model 

Fig. 1. Wind turbine gearbox driven by ring gear 

      

Fig. 2. The on-site measurement of gearbox         Fig. 3. The test points on the gearbox 

4 Results 

   The vibration sensors are fixed as closely as possible to the measured objects and 

the rotating parts. The sampling frequency of vibration data is 10.24 kHz. Some of the 

measured vibrations at the measuring points of No.3 at case of 50% and 110% rated 

load are shown in Figure 4. Point 3 is on high speed shaft.  

   The vibration signals of point 3 are shown in Figure4, and their spectrum are shown 

in Figure 5 correspondingly. From Figure 4 and Figure 5, one cannot easily identify 

one from each other. The obtained spectrum of them in Figure 5 only show that they 
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are both in limited frequency band distributions of 0-3000Hz with slightly different 

shapes.  
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Fig. 4.  The vibration responses picked at point 3 at case of 50%  and 110% rated  load 
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(a) 50% rated load                                (b) 110% rated load 

Fig. 5. The spectrum of vibration signals of point 3 at case of 50% and 110% rated load 

   Now apply HHT for the two signals. The calculated IMFs and instantaneous 

frequencies (IFs) of point 3 are shown in Figure 6 and Figure 7.  

   From Figure 6 (a) and (b), we can see that there are ten IMF components for 

vibration signal of point 3 at case of 50% rated load, and ten IMF components for 

signal vibration signal of point 3 at case of 110% rated load separately. So we can say 

the signal at case of 50% and 110% rated load contain different frequency 

components which embody their different complexity in quantitative way. The first 

IMF of signals at case of 50% rated load, c1, appears as amplitude modulation, is also 

completely different from that in signals at case of 110% rated load. The second and 

third orders of the IMFs of signals at case of 50% rated load, i.e. c2 and c3, appear 

frequency modulations, while signals at case of 110% rated load is not. 

Correspondingly, IF of every IMF of  signals at case of 50% and 110% rated load are 

shown in Figure 7 (a) and (b), which are physically meaningful, and the differences 

between signals at case of 50% and 110% rated load are clearer. 
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(a) 50% rated load                                                   (b) 50% rated load 

Fig. 6. HHT analysis of vibration signals at point 3 at case of  50% and 110% rated load 
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(a) Instantaneous frequencies at case of  50%      (b) Instantaneous frequencies at case of  110% 

Fig. 7 . Instantaneous frequencies of vibration signals at point 3 at case of  50% and 110% 

rated load 

   Furthermore, their Hilbert spectra and marginal spectra are also obtained according 

to the results of IMFs. They are shown in Figure 8 and Figure 9, respectively. 

   From the definition of Hilbert spectrum, we can know the Hilbert spectrum appears 

only in the skeleton (or line) form with emphasis on the frequency variations of each 

IMF. Because it gives more quantitative results, the skeleton presentation is more 

desirable. In Figure 8 (a) and (b), the Hilbert spectra of vibration signals under 

different rated input load are shown. We can distinguish easily the frequency 

variations of each IMF of vibration signals at point 3 under different rated input load 
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easily. Although the frequency variations of each IMF of vibration signals under 

different rated input load focus on within 50Hz, the vibration signals under 110% 

rated input load  are more concentrated and marked, but the vibration signals under 

50% rated input load are discrete relatively. 

   For the marginal spectra of vibration signals under different rated input load are 

shown in Figure 9, they offer the measurements of the total amplitude contributions 

from each frequency value. From Figure 9, we can find the values and their tendency 

of the total amplitude contributions of vibration signals under different rated input 

load  are remarkable different. Vibration signals under 110% rated input load  reaches 

to the maximum accumulation around 10Hz. We can distinguish the differences 

between them as well. 
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(a)  50% rated load                                                 (b)  110% rated load 

Fig. 8.  The Hilbert spectra of vibration signals at case of differnt rated load 
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(a) 50% rated load                                  (b) 110% rated load 

Fig. 9.  The marginal spectrum of vibration signals under differnt rated input load 
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5 Conclusion 

   Two different non-stationary signals are used as examples to be described and 

distinguished in the time-frequency analyses of HHT in the paper. The technique of 

HHT is proved to be effective on processing and distinguishing the differences of the 

vibration signals under differnt rated input load. 

   For the original signals given here, the obtained IMFs with HHT are easily 

distinguished from each others. The Hilbert spectra and the margin spectra are also 

different between them. These results demonstrate that the HHT can offer a more 

effective way for identifying the different features of vibration signals under differnt 

rated input load. 
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