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Abstract: The fault extent recognition technology of rolling bearing is crucial to the 
condition-based maintenance. A Lempel-Ziv complexity based assessment method is 
proposed combined with orthogonal matching pursuit algorithm. The measured original 
vibration signal is processed by orthogonal matching pursuit algorithm to reduce the 
effect of noise, and then the Lempel-Ziv complexity is calculated as an index of bearing 
performance. A fault extent recognition experiment is conducted, and the results indicate 
that the presented method could effectively and accurately conduct the fault extent 
recognition of rolling bearing. 
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1  Introduction 

The rolling bearing is a critical part in the rotating machinery, its failure may cause high-
cost downtime, or even disastrous failure of the whole machinery due to the severe working 
condition. However, the regular maintenance schedule often brings insufficient or excess 
maintenance problem, and still couldn’t prevent the sudden failure of rolling bearing. 
Recognizing the necessity of the condition assessment and degradation trend of rolling bearing, 
the condition-based maintenance aiming to cut down the maintenance cost attracts more and 
more attention [1]. Therefore, the fault extent recognition technology of rolling bearing has 
become a research focus in the Prognostic and Health Management (PHM) field of rolling 
bearing [2, 3]. 
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The feature extraction technology of vibration signal is the investigation basis of 
performance degradation of rolling bearing, the traditional time domain [4, 5] or frequency 
domain parameters [6, 7], such as root-mean-square, kurtosis, the amplitude of characteristic 
frequency, can't accurately represent the rolling bearing condition. Combined with the theory 
of entropy, Huang and Zhao et al. [8, 9] presented EMD energy entropy and EMD approximate 
entropy to analyze the performance degradation trend of rolling bearing. Due to the increasing 
complexity of modern machinery, the time-frequency domain parameters can't satisfy the 
requirement of performance degradation of rolling bearing either. As a time-frequency 
analysis method, the matching pursuit (MP) has a flexible and adaptive basis function and has 
been successfully used in bearing fault diagnosis due to the high signal-to-noise ratio of 
extracted vibration feature [10]. Cui et al. [11] presented an adaptive matching pursuit to realize 
the fault diagnosis of bearing and exhibited an excellent efficiency and stability. 

Yu [12] developed an adaptive-learning-based method for health degradation monitoring, 
and further proposed an adaptive hidden Markov model-based health index that quantifies the 
similarity between the historic and current health condition of bearing. Jensen Rényi 
divergence (JRD) is able to quantify the deviation between probability distribution of bearing 
condition, Singh et al. [13] presented a JRD parameter to analyze the degradation trend of 
bearing condition. Based on fuzzy c-means[14] and k-medoids clustering [15], The confidence 
value between test and normal data is obtained as an assessment index of bearing degradation, 
but the model training must be conducted first utilizing normal and failure vibration data. 
Fractal dimension is an approach to describe the complexity degree of fractal set, Wang et al. 
[16] proposed a performance degradation character based on mathematical morphological 
fractal dimension which has a favorable relevance with performance degradation degree of 
rolling bearing. In the recent years, the Lempel-Ziv complexity (LZC) was investigated for 
evaluating the bearing fault extent. Combined with EMD and local mean decomposition 
algorithm, Dou et al. [17, 18] developed severity recognition models of bearing fault.  

The remainder of this paper is organized as follows. In the first and second section 
respectively illuminate the basic principle of orthogonal matching pursuit and Lempel-Ziv 
complexity, and the proposed assessment method based on the above two algorithm. The third 
section applies two rolling bearing experiments with outer race fault to validate the 
effectiveness of proposed assessment method. 

2  Basic principles of related algorithm 

2.1  Orthogonal matching pursuit 

The orthogonal matching pursuit is an iterative greedy algorithm for signal approximation. 
The basic principle of OMP is to assure that the obtained residual signal is orthogonal to all 
matching atom in every iteration [19]. The detailed iteration steps are as follows. 

(1) Determine an over-complete atom dictionary { }, 1D g gγ γ γ∈Γ
= = , Γ  is the index 

set of atom dictionary. Initialize the original signal y, and the initial residual signal 1R y= ; 

the chosen matching atom set 0ψ ∈∅ , the residual ratio σ  and the number of iteration 
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1k = . 

(2) Find the index γ  such that , sup ,k k kR g R gγ γ
γ∈Γ

= . 

(3) Update the index set { }= γΓ Γ , and the chosen matching atom set 
{ }1

k
k k gγψ ψ −=  . 
(4) Update the residual signal 1 ,k k k k kR R R g gγ γ

+ = − . Therefore, after n iteration the 

original signal y could be decomposed as 

1

1
,

n
k k k n

k
y R g g Rγ γ

+

=

= +∑  

(5) Ask if 
22

kR y σ< , if not, let 1k k= + , return to step 2 and continue to iterate; if 

so, terminate the iteration, output the reconstructed signal 
1

n
k k k

k
x R g gγ γ

=

= ∑  and the 

approximate error R y x= − . 

2.2  Lempel-Ziv complexity 

Lempel-Ziv Complexity (LZC) was first proposed by Abraham Lempel and Jacob Ziv [20] 

to measure the complexity extent of finite time sequence. The coarse graining processing of 

original signal is a critical step for calculating the LZC, and the binarization processing is the 

most popular processing approach recently. The detailed LZC calculation process is listed as 

follows. 

(1) The binarization processing of original numerical sequence. For the original numerical 

sequence ( )x n , if ( ) ( )( )x i mean x n≥ , ( 1, 2, , )i n=  , let ( )=1S i ; otherwise, let 

( )=0S i . After binarization processing, the symbol sequence is obtained as 

( ) { }1 2= , , , NS N S S S . 

(2) Initialize the relevant algorithm parameters. Setting =0r , initialize the temporary 

character variable { },0 =vS  and { }0 =Q , complexity (0)=0NC . When =1r , let 

{ }1 0 1=Q Q s ; 1Q  does not belong to ,0vS , therefore, (1)= (0)+1=1N NC C , { }1Q = , 

= +1r r . 

(3) Calculate the complexity. Let { }1=r r rQ Q s− , { }, 1 , 2 , 1v r v r v rS S s− − −= , ask if rQ belongs 

to , 1v rS − . If so, ( )= ( 1)N NC r C r −  and = 1r r + ; if not, ( )= ( 1)+1N NC r C r − , { }rQ =  

and = 1r r + . Repeat step (3), and loop n times. According to reference [21], empirical values 
of n  should satisfy 3600n ≥ . 
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(4) According Eq. (1), the normalized complexity is finally obtained as 
( ) logN lC n N

C
N

=                                    (1) 

Where, when binarization processing is conducted, 2l = . 

3  Assessment method based on OMP and LZC 

The process diagram of LZC-based degradation assessment method combined with OMP 
is shown in Fig. 1. First, the vibration signal of rolling bearing in a certain condition is 
measured, and the obtained original signal y is introduced in OMP algorithm for noise 
reduction. Then, the reconstructed signal x is obtained through the chosen matching atom set, 
and the symbol sequence S(N) is obtained through the binarization processing of x. 
Calculating the complexity of sequence S(N), and finally the LZC index which assesses the 
bearing condition is obtained after the normalization of complexity according to Eq. (1). 

               
  

 

22

kR y σ<

kR

kgγ

             
 

Fig. 1. The process diagram of proposed assessment method. 
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4  Experiments validation and results analysis 

Firstly, the experimental data from Case Western Reserve University is used for fault extent 
recognition of rolling bearing [22], and the test rig is shown as Fig. 2. The single-point faults, 
including outer raceway, inner raceway and rolling element fault, are introduced into 6205-
2RS JEM SKF bearing at drive end, and this study only applies the vibration data of outer 
raceway fault with fault diameters of 7, 14 and 21 mils (1 mil = 0.001 inches). To verify the 
feasibility of proposed index in different operating conditions, the motor load is selected as 0, 
1, 2 and 3 HP (horsepower) separately.  

 
Fig. 2. The test rig in Case Western Reserve University 

Take the vibration data of rolling bearing with outer raceway fault diameters of 7 mils as a 
case, the data file contains 121991 sample points. In order to increase computation efficiency, 
the data segment contained 10240 points was cut from measured original vibration signal. 
According to the orthogonal matching pursuit algorithm, the original vibration signal is 
processed. The waveform and spectrum of original vibration signal and reconstructed signal 
are shown in Fig. 3 and Fig. 4, separately.  

 

Fig. 3. Measured original signal (7 mils and 0 HP) 
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Fig. 4. Reconstructed signal (7 mils and 0 HP) 

Then, the binarization processing of reconstructed signal is conducted, and the LZC index 
of obtained symbol sequence is computed based on Lempel-Ziv complexity. After finishing 
the computation of all the vibration signals, the results of LZC indexes are all listed in Table 
1. The results indicate that the LZC indexes are restricted in a certain interval for a definite 
fault diameter, although the motor load varies. The Fig. 5 shows that in the same motor load 
condition, the LZC indexes also present an increasing trend with the fault diameter increasing. 
Besides, the motor load doesn’t have an obvious effect on the LZC index. 

Table 1. The LZC indexes of different fault diameters 

Fault diameter / mil Motor load / HP LZC index 

7 

0 0.3987 
1 0.3778 
2 0.3972 
3 0.4415 

14 

0 0.4291 
1 0.4710 
2 0.4753 
3 0.5445 

21 

0 0.6586 
1 0.6293 
2 0.6277 
3 0.6267 

 
The Fig. 5 shows that in the different motor load conditions, the LZC indexes always keep 

a increasing trend while the fault diameter increasing. Through the LZC index computation of 
different fault diameters of outer raceway, the results manifest that the proposed LZC index 
can comparatively effectively recognize the different fault extents of rolling bearing in 
different working conditions based on the orthogonal matching pursuit algorithm and Lempel-
Ziv complexity. 
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Fig. 5. The trends of LZC indexes in different motor load conditions 

5   Conclusion 

For the fault extent recognition of rolling bearing, a Lempel-Ziv complexity-based 
assessment method combined with orthogonal matching pursuit algorithm is proposed. The 
rolling bearing experiments with outer race fault are used to validate the performance of the 
presented assessment method. Through the recognition test of different outer race fault extents, 
it is able to accurately recognize different fault extents in different load conditions.  
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