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Abstract: The paper concerns parameter identification of an ARX type ship 
motion model for a real ship under the frame of system identification (SI) 
principles. Several groups of ship maneuvering experiments have been 
implemented to collect research data. An ARX model is taken for analysis and 
specifically identification of three in the concerned model becomes the research 
topic. The minimum sum of squares due to error is set as the error criterion for 
parameter identification of the model. A complete approach scheme synthesizing 
the recursive least square (RLS) and linear decreasing inertia weight particle 
swarm optimization (LDIWPSO) to get the parameter identification result is 
proposed. Through the application case, the proposed strategy is verified feasible 
and successful: the ordinary RLS can give initial identification results from 
experiments, as well as, the LDIWPSO is able to find a final optimal 
identification result by minimizing the global SSE. The accuracy of the identified 
parameters is checked by comparing plant output and model output and analyzing 
the test of goodness of fit. A final recommended decision on parameter 
identification and the complete ARX model is achieved. The given strategy can 
be applied to parameter identification problems in engineering due to its 
feasibility, effectiveness, and convenience.  

Key words: system identification, parameter identification, ARX ship motion 
model, recursive least square (RLS) algorithm, linear decreasing inertia weight 
particle swarm optimization (LDIWPSO) algorithm 

1. Introduction 

1.1 Research background 

Ship motion mathematical model must be established to study the ship’s motions 
and effectively control the ship [1]. Capability to create highly accurate mathematical 
models for adequate simulation of the manoeuvring motion of real vessels is of great 
practical value, primarily due to the ever increasing demand by numerous ship handling 
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simulation centres, as well as by enterprises developing computer-based bridge 
simulators [2]. Sutulo and Soares [3] have discussed number of selected topics related to 
ship mathematical models used in ship manoeuvring, which is mainly for simulation 
purposes.  

A ship motion model in general consists of two elements: the model structure and 
the parameters. Thus, there are mainly two parts of work need to be done to model a 
ship’s motion: determining/selecting the model structure and identifying/estimating the 
parameters composing the model. In terms of model structure, so far there are four main 
kinds of types for choice: the integrating mathematical model, the separating 
mathematical model (a kind of model proposed by the Ship Manoeuvering 
Mathematical Model Group (MMG) of Japan Towing Tank Conference (JTTC), so the 
separating mathematical model is also called MMG model), the responding 
mathematical model and the difference equation type model. When a model structure 
(model type) is determined/selected, the remaining work is to estimate the parameters 
constructing the model.  

At present, the theoretical systems of ship motion modeling based on the four kinds 
of modeling mechanisms are very complete, and the model structure adopted in each 
kind of modeling methods is relatively fixed or relatively easy to determine. As a result, 
when modeling ship motion based on the existing structures of models, the main content 
or the difficulty of the work does not pointing to selecting/determining the model 
structure, but to identifying the parameters in the model-a parameter estimation process 
by using effective methods.  
1.2 Review of related literatures 

The concept of system identification (SI) was puts forward by Zadeh in 1962 for the 
first time, which means the determination, on the basis of observation of input and 
output, of a system within a specified class of systems to which the system under test 
is equivalent; determination of the initial or terminal state of the system under test [4]. 
Ljung presented that the identification procedure is based on three entities: the data, the 
set of models, and the criterion. Identification, then, is to select a model in the model 
set that describes the data best, according to the criterion [5]. Generally speaking, SI is 
a kind of modeling methods [6]. SI techniques are developed in control engineering to 
build mathematical models for dynamical systems [7], which can make or improve the 
mathematical model of a system based on the experimental data [8, 9].  

SI techniques open new avenues to parameter identification of a ship motion model. 
Since 1970s, SI techniques have been successfully applied in the study of ship motion 
modeling. E.g. all parameters of the mathematical ship maneuvering motion model 
were able to be estimated according to the transfer function between single input 
(steering rudder) and multi-output (manipulation motion state) by using SI. Hwang [10] 
and Wang [11] introduced in detail that the SI technique was applied to model dynamic 
ship motion system. Up to the present, there have been many SI techniques employed 
to the parameter identification of ship motion models. Some examples are the ordinary 
least squares (LS) algorithm [12], improved LS algorithm (e.g. the constrained least 
square (CLS) method [7], etc.), the recursive least square (RLS) algorithm [13], the 
improved RLS algorithm (e.g. the lattice recursive least square (LRLS) algorithm [14], 
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etc.), maximum likelihood (ML) estimation method [15], model reference method (MRA) 
[16, 17], recursive prediction error (RPE) method [18, 19], frequency spectrum analysis 
(FSA) method [20, 21], kalman filter (KF) and the extend kalman filter (EKF) [7, 10, 22], 
wavelet filtering technique [23], particle swarm optimization (PSO) and the improved 
PSO algorithm[1, 24, 25], genetic algorithm (GA) [2], ant colony algorithm (ACA)[26], fruit 
fly optimization algorithm (FOA) [27], and support vector machines (SVM) [28, 29], etc. 
Sutulo and Soares [3] have given a special attention to comparative evaluation of 
methods for estimating manoeuvring model’s parameters including application of 
optimal experimental designs to captive-model tests and various SI techniques. With 
the development of experimental measurement technology today, SI shows its new 
vitality more and more in modeling the complex ship maneuvering motion system. 
Parameter identification of a concerned type of model can be realized by adopting SI 
technique.  
1.3  What the paper focus on 

This paper mainly focus on parameter identification of an autoregressive exogenous 
(ARX) type ship motion model from perspective of SI. Following the guidance of the 
existing contributions, the core and main efforts are: (1) materials and method 
necessary to research goals will be prepared under the frame of the three entities: the 
data, the set of models, and the criterion. (2) due to the simplicity and effectiveness of 
the RLS algorithm and the adaptability of PSO, a complete feasible and effective 
approach scheme of parameter identification by employing RLS and PSO will be 
proposed and then verified through an application case. (3) the proposed approach 
scheme will be applied to parameter identification of an ARX model for a real ship to 
get a recommended result. Where in the application study, referring to Hwang [10], the 
accuracy of final identification result will be checked by comparing the simulated 
motion (model output using identified parameters) and the ship trial record (the real 
plant output); then finally a recommended identification result and complete ARX 
model of the ship will be given.  

2  Material and methods 

The mentioned literatures concerned with parameter identification of ship motion 
model carry out their study under the three entities: the data, the set of models, and the 
criterion. Referring to those, the items in this section are arranged around the three 
entities. First, it gives the definitions of coordinate systems and variables for indicating 
ship motion (see 2.1). Second, it declares how the specific details of the three entities 
are prepared (see 2.2), e.g., as the foundation of research, the data collection and 
preprocessing based on ship maneuvering experiment (see 2.2.1), the selection of model 
class and determination of parameters (see 2.2.2), and the selection of error criterion 
for parameter identification (see 2.2.3): the minimum sum of squares due to error. Third, 
as a key to approach, the employed algorithms including RLS and PSO are introduced 
(see 2.3). Last, it gives a general approach scheme of parameter identification in this 
paper after the above explanation (see 2.4).  

ISSN 2572-4975 (Print), 2572-4991 (Online)                                   419 

javascript:void(0);
javascript:void(0);
javascript:void(0);


2.1 Settings of coordinate systems and variables 

In the field of ship motion modeling, an earth fixed coordinate system and a body 
(the ship) fixed coordinate system, as well as the corresponding variables are usually 
used to describe the concerned ship’s 6 degrees of freedom (6 DOF) of motion, as 
shown in Figure 1.  

 
Fig.1. Coordinate systems and the corresponding variables for 6 DOF motion 

Where, the frame -0 0 0 0O X Y Z  refers to the earth fixed coordinate system while the 
frame -O XYZ  refers to the body fixed coordinate system. 0O  is an selected initial 
point on the earth’s surface and 0 0O X , 0 0O Y , 0 0O Z  respectively point to north, east 
and the earth's core. O  is the original point of the -O XYZ  system (usually the ship’s 
center of gravity is set as the origin point) and OX , OY , OZ  respectively point to 
the bow, starboard and the keel of the ship. Convenient for description, the frame 

1 1 1-O X Y Z  is the translation of -0 0 0 0O X Y Z : centered at O . Referring to -0 0 0 0O X Y Z , ox , 

oy , oz  respectively are the coordinates corresponding to the three axis; ψ , φ , θ  
respectively are heading angle (also known as course), rolling angle, pitching angle, 
which are called Euler angle. Referring to -O XYZ , the unwritten symbols u , v , w  
respectively are the ship’s surge velocity along OX , sway velocity along OY and 
heave velocity along OZ ; The symbols p , q , r  respectively are the ship’s rolling 
rate around OX , pitching rate around OY and yaw rate around OZ . Specific 
meanings of the symbols also can be found in the contributions of Sutulo and Soares [2, 

3] and the other listed references.  
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2.2 The three entities for parameter identification 

2.2.1 Data collection and pre-processing based on ship maneuvering experiment  

It is an indispensable basic work to obtain observational data of the plant through 
appropriate, practical physical experiment. As the foundation, several groups of ship 
maneuvering experiments have been executed to support the research. 

2.2.1.1 A general introduction to the concerned ship 

The concerned ship is named “YI CHANG HUI FENG 9”, whose appearance and 
main hull details are present in Figure 2 and Table 1.  

 
Fig.2. The concerned ship: YI CHANG HUI FENG 9 

Table 1. Main hull details of the target ship 

Attribute names Attribute values Attribute names Attribute values 

Name YI CHANG 
HUI FENG 9 Identification NO. CN20058425641 

Ship type Multi-purpose Registration NO. 2005H4300399 

Built date 2005.Oct.08 Limited 
navigation areas Class A 

LOA 76.80m Ship length 73.71m 
Waterline length (full) 76.41m Ship width 13.6m 

Moulded depth 4.4m Maximum height 17.00m 
Draft(empty) 0.789m Draft(full) 3.8m 

Displacement(empty) 559.7t displacement(full) 3274.55t  

Engine rated power 0.257kw/r/min
× 2 

Engine reduction 
ratio 4:1 

2.2.1.2 Experiment environment 

The experiment environment includes: Date: 2016 Sept. 21; Place: Gulaobei channel, 
Yangtze River; Air temperature: 22︒C; Wind condition: nearly no; Visibility: 10 km; 
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Flow speed: about 1.46 m/s (the mean of drifting speed of an empty plastic bottle for 2 
times).  

2.2.1.3 Equipment and methods for data collection  

Data collection mainly refers to obtaining the input and output data of ship dynamic 
system. This section presents the equipments and methods used for data collection. 

(1) System output: state variables record 
System output refers to state variables of ship motion, such as the location and 

velocity in -0 0 0 0O X Y Z  frame, the attitude angle and angular velocity referring to 

-O XYZ frame, etc. A data collection system (DCS; primary version) is developed in 
advance for ship motion records. The system uses a high precision navigation satellite 
receiving module (HP NS receiving module) to get ship’s location, as well as an attitude 
sensor inside an Inertial Navigation System (INS) to sense ship’s attitude related to 3 
axis. Where, the HP NS receiving module refers to a functional unit integrating the 
BeiDou Navigation Satellite System (BDS) / Global Positioning System (GPS) 
receiving modules. The collected information is transmit to a personal computer (PC) 
through a gate way (an IO server) and saved to the database (in the form of excel file).  

At every sampling point, the DCS automatically records and gives system output 
in international standard unit, such as location and velocity in -0 0 0 0O X Y Z  frame, the 
attitude angle and angular velocity referring to -O XYZ frame, etc. There are 13~16 
sampling points in each second and each sampling point is indicated by an ID number. 
Due to limited space, data format from the DCS is not presented here, a detailed show 
of data format can be referred in the supplement doc file if needed.  

Besides, a handheld GARMIN GPS is used in the bridge to continuously record 
ship location automatically and occasionally mark the key positions manually. Thus, 
the tools for system output data collection are shown in Figure 3.  

 
Fig. 3. Tools for system output data collection (left: conceptual structure of DCS; Mid: physical 

hardwire connection of DCS; Right: The handheld GARMIN GPS)  

(2) System input: control variable record  
System input, mainly referring to rudder order and engine telegraph, is recorded 

manually on the bridge.  
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2.2.1.4 Data pre-processing  

It is need to process the collected raw data before it is used. For those collected by 
DCS, the missed data at a sampling point is added as well as the abnormal data is 
replaced both by using moving average method, according to equation (1). 

5 5

1 1
( ) ( )

( )
10

i i

i i
y k i y k i

y k

= =

= =

− + +
=
∑ ∑

                  (1) 

Where, k  represents the sampling point serial number.  
The mean value of the data at every sampling point within 1 second is used as the 

observation at this second, according to equation (2). 

1
( )

( )

n

i
i

y t
y t

n
==
∑

                      (2) 
Where, t  represents the sampling time (s); n  represents the number of samples 

completed by DCS within the -tht second; ( )iy t  represents the observation at each 
sampling point, 1,2,3, ,i n=  .  

2.2.1.5 Data collection and display  

Uploading the position data (recorded by GARMIN GPS) to Google Earth, ship track 
of the whole journey of experiment is shown in Figure 4 with the red solid line.  

 

Fig.4. Ship track record by the handheld GARMIN GPS 

During the whole journey, there are three periods when the system input (the rudder 
order) was relatively well observed and recorded. The three periods are respectively 
corresponding to Experiments 1~3, which are also shown in Figure 4. Thus, the system 
input-output data collected while carrying Experiments 1~3 are used for research.  

For one thing, system output data collection while executing Experiments 1~3 are 
completed by the DCS automatically. For another, rudder order is got by manual record 
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on the bridge. Due to limited space, the source data in excel files is not presented here, 
only visualization of the acquired data is shown in the pictures. Part of system output 
collected by DCS is able to be provided if needed. After data collection and processing 
using the above mentioned ways, system input-output data are shown in Figure 5, where 
the red solid line refers to system output (observed ship course, (0)ψ ), while the blue 
solid line refers to system input (rudder order, δ ). Considering rudder angle, note that 
the omitted “+” represents steering port side while “-” represents steering starboard side. 

 
Fig. 5. System input-output data (Left: Experiment 1; Mid: Experiment 2; Right: Experiment 3) 

2.2.2 Model class selection: the ARX type ship motion model 

2.2.2.1 A general task description of ship motion modeling 

According to the plant (the ship specifically) input X


 and the state output Y


, the 
task of modeling ship motion from perspective of SI is to find out a model (or a function) 
M , which usually consist of two elements: the structure and parameters. What is to 
say, the model can be expressed by form (3).  

{ }structure parameM ters                            (3) 
Then, here comes the model output by the conceptual equation (4).  

ˆ ( )M=Y X
                     (4) 

where, M  is required to minimize some kind of tracking error. For instance, when 
taking same input X



 into account, it is required that the model M  can minimize 
ˆ( )F −Y Y



, where F  is a chosen function based on the actual demand.  
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2.2.2.2 Concerned model type and the parameters: the ARX type  

Mainly analyzing the planar motion (3 DOF motion), the responding ship motion 
model captures chain reaction of rudder angle-turning speed-course ( δ ψ ψ→ → ) [30], 
which mainly describes ship course’s response to the steering rudder in the plane. The 
paper goes from analyzing a first order linear responding ship motion model, which is 
expressed by equation (5). 

Tr r Kδ+ = .                    (5) 
Where in equation (5), K , T represent ship maneuverability indices; r  

represents the angular velocity of turning ( r ψ=   and ψ  represents the ship course); 
δ  represents the current actual rudder angle.  

Equation (5) is of a continuous form. However in engineering, a discrete form of the 
object's input and output is usually easy to be observed. That is to say, system output 

( )y k and input ( )u k  are easy to be obtained by the sensors, k  represents the 
observation moment. Specifically, plant output ( )kψ  and input ( )kδ  are usually 
easy to get. This article is just about parameter identification of a specific model after 
getting plant input an ( )kψ d output ( )kδ . 

Set fixed sampling interval 1 second and discretize the continuous variables in 
equation (5) by using forward difference method, as shown by equations (6) and (7).  

( ) ( 1) ( )r k k kψ ψ= + −                     (6) 
( ) ( +1) ( )

( ( 2) ( +1)) ( ( +1) ( ))
( +2) 2 ( +1) ( )

r k r k r k
k k k k

k k k
ψ ψ ψ ψ
ψ ψ ψ

= −
= + − − −
= − +



       (7) 

Then equation (5) can be discretized into equation (8). 
( ( +2) 2 ( +1) ( ))+( ( 1) ( ))= ( )T k k k k k K kψ ψ ψ ψ ψ δ− + + −         (8) 

Equation (8) can be rearranged to equation (9). 
2 +1 1( +2)+ ( +1) ( )= ( )T T Kk k k k
T T T

ψ ψ ψ δ− −
+           (9) 

Let 2 1Ta
T

− +
= , 1Tb

T
−

=  and c= K
T

, equation (9) can be concisely represented 

by equation (10). 
  ( +2)+ ( +1) ( )= ( )k a k b k c kψ ψ ψ δ+                (10) 

Rewrite the equation (10) to standard ARX type, expressed by equation (11). 
( )+ ( 1) ( 2)= ( 2)k a k b k c kψ ψ ψ δ− + − −             (11) 

So far, equation (11) is selected as the concerned CAR type model in this paper. 
Where, the parameters considered to be identified are a , b  and c .  

An implicit form of equation (11) is equation (12).  
( )= ( )k kψ ⋅φ p                    (12) 

Where, ( )=[ ( 1) ( 2) ( 2)]k k k kψ ψ δ− − −φ , and 
a
b

c

− 
 = − 
  

p .  
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Then, the parameter vector to be identified is p . For distinction, the symbol p̂  is 
utilized as the estimation of p . 

2.2.3 Error criterion: minimizing sum of squares due to error  

The specific mathematic model of tracking error determines the quality of 
identification result. Usually, a function of tracking error is used as the criterion to judge 
the parameter identification quality. The smaller the function value is, the higher the 
precision is. Generally for a single input single output (SISO) model, the error criterion 
can be implicity expressed by equation (13).  

( )min ( )J f e k=                   (13) 
Where, J  refers to the evaluation index (function value), f  refers to some 

specific function, ( )e k  refers to the tracking error at the k  step, k  refers to 
sampling time. For a SISO model, the tracking error ( )e k  is popularly calculated by 
(14).  

M P( ) ( ) ( )e k y k y k= −                 (14) 
Where, Mψ  represents the model output by using the identified parameters, Pψ  

represents the plant output.  
Specifically for our topic, since the concerned ARX model employs single input 

(rudder angel δ ) and gives a single output (ship course ψ ), the concepts of equations 
(13) and (14) can be used. Thus, based on the minimum sum of squares due to error 
(SSE), the following equation (15) is introduced as the criterion in the paper.  

SSESSE
1

min
K

m

m
J J

=

= ∑                 (15) 

Where, 
SSE

mJ  is calculated by using equation (16). 

SSE

2

1
( )

mN
m

t
J e tψ

=

= ∑                    (16) 

And, ( )e tψ  is calculated by using equation (17). 

M P( ) ( ) ( )e k k kψ ψ= −                    (17) 
In equations (15) ~ (17), k  refers to sampling time; Mψ  represents the ARX 

model output;  Pψ  represents the ship output; ( )e k  refers to the tracking error at the 
k  step;  =1,2, ,m K  represent the -thm experiment; mN  is the total number of 
sampling points in the -thm experiment; then 

SSE

mJ  represents the SSE corresponding 
to the -thm experiment; K  is the total number of experiments ( =3K  since there are 
3 groups of experiments); then as evaluation index, the final SSEJ  refers to a global 
SSE.  

The error criterion in this paper, equation (15), aims at minimizing a global SSE so 
that the final achieved ARX model can hold a universal adaptability: suitable for fitting 
output data from any group of experiment.  
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2.3 Employed algorithms and settings 

Suitable algorithms ensures the feasibility and efficiency of solving the problem-
parameter identification. The traditional methods, or recently new born optimization 
algorithms can be introduced to search a best solution. Given the simple principle and 
convenient implementation of least squares estimation (LSE) algorithms, the paper 
respectively applies the recursive least square (RLS) algorithm to estimate parameters 
from each experiment, in order to achieve an initial identification result. Afterward, one 
of the swarm intelligence optimization algorithms (SIOAs), the linear decreasing inertia 
weight particle swarm optimization (LDIWPSO) will be introduced to search a final 
identification result, which can minimizing the global SSE.  

2.3.1 The recursive least square (RLS) algorithm  

2.3.1.1 Algorithm description 

Generally, consider the follow universal ARX equation (18), which is designed to 
model a plant:  

1 1
M M M( ) ( ) ( ) ( )A z y k B z u k nu− −= −                (18) 

where, k  represents current time; M ( )y k  is model output; M ( )u k  is model input; 
1 1 2 3

1 2 3 a( ) 1 na
nA z a z a z a z a z− − − − −= + + + + + ; 1 1 2 ( 1)

1 2 3( ) nb
nbB z b b z b z b z− − − − −= + + + + ; 

1z− is the backward shift operator; na  and nb respectively denote the length of 
coefficient vector A  and B ; Mnu  is the model input ( M ( )u k ) lag.  

If na , nb  and nu  have been already determined, the next step is the parameter 
identification of A  and B . Note that M ( )u k  is set same with the plant input ( )u k  
for parameter identification problem, which means M ( )= ( )u k u k .  

Convert (18) to an implicit form, referring to equation (19) 
T

M M( ) ( )y k k= φ θ                 (19) 
where, T

M ( )kφ  is called an information vector composed by M ( )y k  and M ( )u k .  

By contrasting (19) with (18), T
M ( )kφ  is indicated by equation (20).  

[ ]MM M M M M M M M M( )= ( 1), ( 2), , ( ), ( ), ( ( 1)), , ( ( 1))k y k y k y k na u k nu u k nu u k nu nb− − − − − + − + −φ  
 

(20) 
Now the newly introduced variable θ , where the original A  and B  are inside, 

becomes the parameter vector to be identified.  
Then the RLS algorithm for parameters identification of equation (18) after getting 

system input-output is given by equation (21):  

T

1 1 T

ˆ ˆ( ) ( 1) ( ) ( ) ( )
ˆ( ) ( ) ( ) ( 1)

( ) ( 1) ( ) ( )

k k k k e k

e k y k k k
k k k k

θ θ

θ
− −

 = − +
 = − −
 = − +

P φ

φ
P P φ φ

                (21) 
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where, P is a covariance matrix; ( )e k  in the equation is called the innovation. Since 
it has only one dimension, the ( )e k  here is known as a scalar and is more accurately 
considered as single-innovation. Thus, the RLS algorithm mentioned here can also be 
called single innovation recursive least square (SIRLS) algorithm. 

Concerning each experiment, equation (21) is adopted to estimate the parameters in 
equation (11) or (12), and, the identification results given by RLS is marked with RLSp . 

2.3.1.2 Algorithm settings  

The starting values when implementing the ordinary RLS are set as follows. 
Starting value of the parameters: (0) [ (0) (0) (0)] [0 0 0]a b c= =p  

Starting value of the covariance martix: 3

1 1 1
(0) 1 1 1 10

1 1 1

 
 = ⋅ 
  

P  

2.3.2 The linear decreasing inertia weight particle swarm optimization 
(LDIWPSO) algorithm 

Particle swarm optimization (PSO) algorithm is a stochastic optimization method 
developed by Dr. Kennedy and Dr. Eberhart in 1995 [31, 32], who were inspired by social 
behavior of bird flocking or fish schooling. SHI etc. studied the basic characteristics of 
PSO [33], got some early experience on parameter selection in the algorithm. Then they 
presented a new concept about inertia weight to improve the original PSO, which aimed 
at providing a balance between global and local searching, and concluded that the PSO 
with the fixed inertia weight in the range [0.9, 1.2] on average will have a better 
performance [34]. Furthermore, researchers have introduced variation of inertia weight 
to improve performance of PSO, such as the linearly decreasing inertia weight [35, 36], 
sigmoid decreasing inertia weight [37], etc. To distinguish the varied forms of PSO, the 
paper here would like to call the original one developed by Dr. Kennedy and Dr. 
Eberhart in 1995 the basic PSO, and call the inertia weight modified algorithm proposed 
by SHI etc. in 1998 the standard PSO. Since a linear decreasing inertia weight PSO 
(LDIWPSO) is employed in this paper, the introduction of LDIWPSO and the setting 
of the algorithm is given below.  

2.3.2.1 Algorithm description 

The mathematical model of LDIWPSO in the case of optimizing multi-
dimension function (the objective function) is as follows.  

Objective function: 1 2( )Df x x x , where D  is the dimension of the search 
space.  

Position of a particle: 1 2( , , , )i i i iDx x x x=  , where 1,2, ,i NP=   and NP  
represents the total number particles.  

Velocity of a particle: i 1 2, , )i i iDv v v v= （ ， , where m in max[ , ]idv v v∈ , m inv  and maxv  
are assigned boundary velocity.  
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Personal best: 1 2( , , , )best i i iDp p p p=  , where bestp  refers to the best position (a 
solution to the objective function) searched by the i-th particle so far. 

Global best: 1 2( , , , )best g g gDg p p p=  , where bestg  refers to the best position (the best 

solution to the objective function) searched by the whole particles so far.  
When bestp  and bestg  obtained at current iteration k , the velocity and position of 

a particle are updated according to equations (22) and (23).  
  ( )1 1 2 2 ( )id id id id gd idv w v c r p x c r p x= ∗ + − + −           (22) 

id id idx x v= +                           (23) 
Where: { }1 2d D∈  ; 1c  and 2c  represent the learning factors (also called 

the acceleration constants); 1r  and 2r  are uniformly distributed random numbers, 

1 2, [0,1]r r ∈ . w  represents the inertia weight, [0,1]w∈ . 
The linearly decreasing inertia weight ( w ) changes according to equation (24). 

max min
maxk

w ww w k
MC
−

= −                 (24) 

Where: kw  is the variable weight applied to (22); maxw  and minw  are limits on 
inertia weight; MC  represents the maximum iteration cycle.  

When the maximum number of iteration reached, output the bestg  (the best position 
of particles) as the global best solution to the objective function.  

2.3.2.3 LDIWPSO’s adaptability to parameter identification  

LDIWPSO’s adaptability to parameter identification is presented as follows. 
(1) The SSE based fitness function and fitness degree  
Based on the requirement of error criterion, the smaller SSEJ  is, the higher the 

accuracy of parameter identification is, which means that the estimated parameter is 

closer to real value. Thus, a reciprocal of SSEJ , 
SSE

1
J

 can be regarded as a fitness 

function by which the fitness degree ( Fitnessd ) of a particle is calculated. What is to say, 
the equation (25) can be used to evaluate particle’ positions (the quality of parameter 
identification).  

Fitness
SSE

1d
J

=                     (25) 

(2) The corresponding relation analysis  
The corresponding relation among particle swarm behavior, multi-dimension 

function optimization and parameter identification of the ARX model is listed in Table 
2.  
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Table 2. The corresponding relation: LDIWPSO’s adaptability  

Particle swarm behavior  Multi-dimension 
function optimization Parameter identification 

All of the possible 
locations  Feasible solutions  Various values of the 

parameters a , b , c  

Particle’s fitness degree  Quality of the feasible 
solution 

Performance index ( SSEJ ) 
value  in accordance with 
different a , b , c  

The speed of  finding 
the optimal location  

Speed of optimizing 
feasible solutions 

Speed of optimizing the 
performance index SSEJ   

The optimal location 
corresponding to 
maximum fitness degree 

The optimal solution 
The optimal a , b , c  
minimizing the performance 
index SSEJ  

Thus, it can be seen that parameter identification of the ARX model is able to be 
inverted as a nonlinear function optimization problem, which could be solved using 

LDIWPSO. Similarly, the LDIWPSO’s identification result is symbolled with LDIWPSOp̂ .  

2.3.2.3 Related settings for LDIWPSO searching process  

Related settings for executing LDIWPSO to search a most suitable result are given 
as follow.  

Dimension of the search space: =3D  

The searching space: upper bound: RLSub ˆmax=p p ; lower bound: RLSlb ˆmin=p p . Where, 
RLSp̂  represents the initial identification results by executing RLS. 

Population size (Number of particles): =80NP   
Maximum iteration cycle: 20MC =  
The flying speed: Maximum flying speed: max 0.5V = ; Minimum flying speed: 

min 0.5V = −   
Learning factor: 1 1.3c = and 2 1.7c = . 
Limits on inertia weight: Maximum inertia weight max 0.9w = , Minimum inertia 

weight min 0.1w = . 
2.4 The approach scheme of parameter identification  

Since the work goes under the frame of SI theory, the three entities (system input-
output data of ship motion, concerned model class, and the tracking error criterion) for 
parameter identification should be meet first. The paper (1) collects plant input-output 
data by executing 3 groups of ship maneuvering experiments; (2) take an ARX type 
model for analysis, where there are 3 parameters of the concerned model need to be 
estimated; and (3) selects the LS as the error criterion for parameter identification. The 
RLS algorithm is applied to obtain an initial identification result from each group of 
experiment. By expanding the initial identifications to searching space and using error 
criterion based fitness function, a LDIWPSO searching process is implemented to 
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optimize the initial identifications to get a better identification result, which minimizes 
the sum of squares due to error (SSE). LDIWPSO’s contribution is verified by 
comparing plant output and model output and analyzing the test of goodness of fit. Then, 
a final recommended decisions on parameter identification and the complete ARX 
model can be achieved. After the just explanation, the approach scheme of parameter 
identification in this paper is shown in Figure 6.  

 

 

Fig. 6. The approach scheme of parameter identification 

3  Results and discussion 

This section goes in accordance with the steps describes in section 2.5 and Figure 6. 
Results and discussion after executing each step, including the algorithms, settings, etc., 
are given as follow.   

The three entities are prepared and illustrated first to meet the basic requirements. 
Three groups of ship maneuvering experiments are implemented for data collection. 
Results of data collection and pre-processing can be seen in section 2.2.1. As explained 
in 2.2.2, the paper considers an ARX type model, where there are 3 parameters of the 
concerned model to be estimated. According to the error criterion, quality of the 
estimated parameters is designed to be judged by SSE. That is to say, the goal of 
parameter identification is to minimize the SSE, which is given in 2.2.3.  

Based on the manoeuvring experiments, the RLS is used to identify the parameters 
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from each experiment, in order to give an initial identification. The initial identification 
processes and results by using RLS are given in Figures 7~9 and Table 2. Where, the 
symbol *̂( )k  represents the estimated value, and symbol ˆ ˆ ˆ*( ) *( 1) *( 1)k k k∆ = + −  
represents the change rate of *̂( )k .  

 

Fig.7. Parameter identification process from Experiment 1 (Left: a ;  Mid: b ; Right: c ) 

 

Fig. 8. Parameter identification process from Experiment 2 (Left: a ;  Mid: b ; Right: c ) 
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Fig. 9. Parameter identification process from Experiment 3 (Left: a ;  Mid: b ; Right: c ) 

Table 2. Initial identification: estimated parameters from experiments by RLS  

Initial identification Group 
Experiment 1 Experiment 2 Experiment 3 

Parameter 
a  -1.9553 -1.9460 -1.9596 
b  0.9553 0.9460 0.9596 
c  -0.0018 -0.0019 -0.0012 

From Figures 7~9, the estimated value *̂( )k  is convergent: the change rate *̂( )k∆  

gradually approaches to 0 and *̂( )k  tends to a fixed value. However, the initial 
identification results are not consistent: after RLS’s iteration, the final estimated values 
obtained from the 3 experiments are different from each other, as shown in Figures 7~9 
and Table 2. Besides, the result from an experiment can only minimizing the SSE 
corresponding to the concerned experiment, and is not able to minimize the global SSE.  

In view of this situation, the paper has planned to achieve a global optimal parameter 
identification of the AXR model by using LDIWPSO to minimize the SSE based 
objective function, which can be found in 2.2.3.  

The automatic search process is carried out on MATLAB. After running the codes 
one time, the optimization process (change of the function value with iteration) by PSO 
is shown in Figure 10.  
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Fig. 10. LDIWPSO searching process: objective function value VS iteration  

From figure 10, it can be seen that after 20 iterations, the minimum objective 
function value reaches 4148 at the 14th step, corresponding to an independent variable 
vector [ ]1.9596 0.9596 0.0013− − . Thus, it is recognized that the identification result 

given by PSO is [ ] [ ]PSO PSO PSO PSOˆ 1.9596 0.9596 0.0013a b c= = − −p .  

Now comes testing the PSO based result. Similar with Hwang [10], the accuracy of 
the obtained parameters by PSO is checked by comparing the simulated motion (model 
output using identified parameters) and the trial record (plant output: the real ship 
maneuvering trial record). Consistently, taking the above steering commands as input, 
the observed plant output (red line) and the model output (blue line) are shown in Figure 
11 to make comparisons.  

 

Fig. 11. Comparision between plant output and model output using recommended parameters 

What is more, the test of goodness of fit indicated by the statistical indexes are listed 
in Table 3. Where, SSE: sum of squares due to error; SSR: sum of squares for regression; 
SST: sum of squares for total. CoD: coefficient of determination ( 2R ). 
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Table 4. The test of goodness of fit 

Index value 
Category 

Experiment 1 Experiment 2 Experiment 3 Final total 

Statistical 
index 

SSE 1792 1143 1213 4148 
SSR 18903 22993 65492 107388 
SST 20695 24137 66706 111537 
CoD 0.9134 0.9526 0.9818 0.9628 

By applying the LDIWPSO’s contribution, model output fits the plant output well, 
as shown in Figure 11. The final CoD ( 2R ) reaches 0.9628, indicating that the identified 
parameters make the mathematical model high quality, as given in Table 3. Thus, the 
LDIWPSO searched results are treated as the final recommended parameters, and the 
complete ARX model is expressed by equation (26).  

( ) 1.9596 ( 1) 0.9596( 2)= 0.0013 ( 2)k k k kψ ψ δ− − + − − −           (26) 
Thus, the propose approach scheme of identifying parameters of an ARX ship 

motion model is verified feasible and successful through the application case. It is 
thought that the given strategy can be applied to solve practical problems in engineering.  

4  Conclusion 

The paper concerns parameter identification of ARX model under the framework of 
SI’s three entities: the data, the set of models, and the criterion. A complete technical 
route of estimating the parameters of the ARX model is proposed and applied to solving 
a practical problem. It is concluded after the thread of the research that:  

(1) The approaches to the three entities (system input-output data of ship motion, 
concerned model class, and the tracking error criterion) for parameter identification are 
achievable, which provides the foundation of the research topic. 

(2) The strategy of synthesizing the RLS and LDIWPSO to get the parameter 
identification result is verified feasible and successful through the application case. The 
ordinary RLS can give initial identification results from experiments; the classical 
LDIWPSO is able to find a final optimal identification result by minimizing the global 
SSE. 

(3) It is inferred that the given strategy can be applied to parameter identification of 
other difference equation type motion model, e.g., the autoregressive (AR) type, the 
autoregressive moving average (ARMA) type, etc.  
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